Космические лучи
Косми́ческие лучи́ — элементарные частицы и ядра атомов, движущиеся с высокими энергиями в космическом пространстве[1][2].
Содержание
1 Основные сведения
2 История физики космических лучей
3 Потоки высокоэнергичных заряженных частиц в околоземном космическом пространстве
3.1 Галактические космические лучи (ГКЛ)
3.2 Вторичные частицы в магнитосфере Земли: радиационный пояс, частицы альбедо
3.3 Солнечные космические лучи
4 Космические лучи ультравысоких энергий
5 Регистрация космических лучей
6 Значение для космических полётов
6.1 Визуальный феномен космических лучей (англ.)
6.2 Радиация
7 См. также
8 Примечания
9 Литература
10 Ссылки
Основные сведения |
Физику космических лучей принято считать частью физики высоких энергий и физики элементарных частиц.
Физика космических лучей изучает:
- процессы, приводящие к возникновению и ускорению космических лучей;
- частицы космических лучей, их природу и свойства;
- явления, вызванные частицами космических лучей в космическом пространстве, атмосфере Земли и планет.
Изучение потоков высокоэнергетичных заряженных и нейтральных космических частиц, попадающих на границу атмосферы Земли, является важнейшими экспериментальными задачами.
Классификация по происхождению космических лучей:
- вне нашей Галактики;
- в Галактике;
- на Солнце;
- в межпланетном пространстве.
Первичными принято называть внегалактические, галактические и солнечные космические лучи.
Вторичными космическими лучами принято называть потоки частиц, возникающих под действием первичных космических лучей в атмосфере Земли и регистрирующихся на поверхности Земли.
Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.
До развития ускорительной техники космические лучи служили единственным источником элементарных частиц высокой энергии. Так, позитрон и мюон были впервые найдены в космических лучах.
Энергетический спектр космических лучей на 43 % состоит из энергии протонов, ещё на 23 % — из энергии ядер гелия (альфа-частиц) и на 34 % из энергии, переносимой остальными частицами[3][нет в источнике].
По количеству частиц космические лучи на 92 % состоят из протонов, на 6 % — из ядер гелия, около 1 % составляют более тяжелые элементы, и около 1 % приходится на электроны[3][4]. При изучении источников космических лучей вне Солнечной системы протонно-ядерная компонента в основном обнаруживается по создаваемому ею потоку гамма-лучей орбитальными гамма-телескопами, а электронная компонента — по порождаемому ею синхротронному излучению, которое приходится на радиодиапазон (в частности, на метровые волны — при излучении в магнитном поле межзвёздной среды), а при сильных магнитных полях в районе источника космических лучей — и на более высокочастотные диапазоны. Поэтому электронная компонента может обнаруживаться и наземными астрономическими инструментами[5][1].
Традиционно частицы, наблюдаемые в КЛ, делят на следующие группы: p (Z=1),{displaystyle (Z=1),} α (Z=2),{displaystyle (Z=2),} L (Z=3...5),{displaystyle (Z=3...5),} M (Z=6...9),{displaystyle (Z=6...9),} H (Z⩾10),{displaystyle (Zgeqslant 10),} VH (Z⩾20){displaystyle (Zgeqslant 20)} (соответственно, протоны, альфа-частицы, лёгкие, средние, тяжёлые и сверхтяжёлые). Особенностью химического состава первичного космического излучения является аномально высокое (в несколько тысяч раз) содержание ядер группы L (литий, бериллий, бор) по сравнению с составом звёзд и межзвёздного газа[3]. Данное явление объясняется тем, что механизм генерации космических частиц в первую очередь ускоряет тяжёлые ядра, которые при взаимодействии с протонами межзвёздной среды распадаются на более лёгкие ядра[4]. Данное предположение подтверждается тем, что КЛ обладают очень высокой степенью изотропии.
История физики космических лучей |
Впервые указание на возможность существования ионизирующего излучения внеземного происхождения было получено в начале XX века в опытах по изучению проводимости газов. Обнаруженный спонтанный электрический ток в газе не удавалось объяснить ионизацией, возникающей от естественной радиоактивности Земли. Наблюдаемое излучение оказалось настолько проникающим, что в ионизационных камерах, экранированных толстыми слоями свинца, все равно наблюдался остаточный ток. В 1911—1912 годах был проведен ряд экспериментов с ионизационными камерами на воздушных шарах. Гесс обнаружил, что излучение растет с высотой, в то время как ионизация, вызванная радиоактивностью Земли, должна была бы падать с высотой. В опытах Кольхерстера было доказано, что это излучение направлено сверху вниз.
В 1921—1925 годах американский физик Милликен, изучая поглощение космического излучения в атмосфере Земли в зависимости от высоты наблюдения, обнаружил, что в свинце это излучение поглощается так же, как и гамма-излучение ядер. Милликен первым и назвал это излучение космическими лучами.
В 1925 году советские физики Л. А. Тувим и Л. В. Мысовский провели измерение поглощения космического излучения в воде: оказалось, что это излучение поглощалось в десять раз слабее, чем гамма-излучение ядер. Мысовский и Тувим обнаружили также, что интенсивность излучения зависит от барометрического давления — открыли «барометрический эффект». Опыты Д. В. Скобельцына с камерой Вильсона, помещенной в постоянное магнитное поле, дали возможность «увидеть», за счет ионизации, следы (треки) космических частиц. Д. В. Скобельцын открыл ливни космических частиц.
Эксперименты в космических лучах позволили сделать ряд принципиальных для физики микромира открытий.
В 1932 году Андерсон открыл в космических лучах позитрон. В 1937 году Андерсоном и Неддермейером были открыты мюоны и указан тип их распада. В 1947 году открыли π-мезоны. В 1955 году в космических лучах установили наличие К-мезонов, а также и тяжелых нейтральных частиц — гиперонов.
Квантовая характеристика «странность» появилась в опытах с космическими лучами. Эксперименты в космических лучах поставили вопрос о сохранении четности, обнаружили процессы множественной генерации частиц в нуклонных взаимодействиях, позволили определить величину эффективного сечения взаимодействия нуклонов высокой энергии.
Появление космических ракет и спутников привело к новым открытиям — обнаружению радиационных поясов Земли (февраль 1958 г., Ван Аллен и, независимо от него, июль того же года, С. Н. Вернов и А. Е. Чудаков[6]), и позволило создать новые методы исследования галактического и межгалактического пространств.
Потоки высокоэнергичных заряженных частиц в околоземном космическом пространстве |
В околоземном космическом пространстве (ОКП) различают несколько типов космических лучей. К стационарным принято относить галактические космические лучи (ГКЛ), частицы альбедо и радиационный пояс. К нестационарным — солнечные космические лучи (СКЛ).
Галактические космические лучи (ГКЛ) |
Галактические космические лучи (ГКЛ) состоят из ядер различных химических элементов с кинетической энергией Е более нескольких десятков МэВ/нуклон, а также электронов и позитронов с Е > 10 МэВ. Эти частицы приходят в межпланетное пространство из межзвёздной среды. Наиболее вероятными источниками космических лучей считаются вспышки сверхновых звёзд и образующиеся при этом пульсары. Электромагнитные поля пульсаров ускоряют заряженные частицы, которые затем рассеиваются на межзвёздных магнитных полях[7]. Возможно, однако, что в области Е < 100 МэВ/нуклон частицы образуются за счет ускорения в межпланетной среде частиц солнечного ветра и межзвездного газа. Дифференциальный энергетический спектр ГКЛ носит степенной характер.
Вторичные частицы в магнитосфере Земли: радиационный пояс, частицы альбедо |
Внутри магнитосферы, как и в любом дипольном магнитном поле, есть области, недоступные для частиц с кинетической энергией E меньше критической. Те же частицы с энергией E < Eкр, которые всё-таки уже там находятся, не могут эти области покинуть. Эти запрещённые области магнитосферы называются зонами захвата. В зонах захвата дипольного (квазидипольного) поля Земли действительно удерживаются значительные потоки захваченных частиц (прежде всего, протонов и электронов).
В околоземном пространстве можно выделить две торообразные области, расположенные в экваториальной плоскости примерно на расстоянии от 300 км (в зоне БМА) до 6000 км (внутренний РПЗ) и от 12 000 км до 40 000 км (внешний РПЗ). Основным наполнением внутреннего пояса являются протоны с высокими энергиями от 1 до 1000 МэВ, а внешнего — электроны.
Максимум интенсивности протонов низких энергий расположен на расстояниях L ~ 3 радиусов Земли от её центра. Малоэнергичные электроны заполняют всю область захвата. Для них нет разделения на внутренний и внешний пояса. Поток протонов во внутреннем поясе довольно устойчив во времени.
Процесс взаимодействия ядер первичного космического излучения с атмосферой сопровождается возникновением нейтронов. Поток нейтронов, идущий от Земли (нейтроны альбедо), беспрепятственно проходит сквозь магнитное поле Земли. Поскольку нейтроны нестабильны (среднее время распада ~900 с), часть из них распадается в зонах, недоступных для заряженных частиц малых энергий. Таким образом, продукты распада нейтронов (протоны и электроны) рождаются прямо в зонах захвата. В зависимости от энергии и питч-углов эти протоны и электроны могут либо оказаться захваченными, либо покинуть эту область.
Частицы альбедо — это вторичные частицы, отраженные от атмосферы Земли. Нейтроны альбедо обеспечивают радиационный пояс протонами с энергией до 10³ МэВ и электронами с энергией до нескольких МэВ.
Солнечные космические лучи |
Солнечными космическими лучами (СКЛ) называются энергичные заряженные частицы — электроны, протоны и ядра, — инжектированные Солнцем в межпланетное пространство. Энергия СКЛ простирается от нескольких кэВ до нескольких ГэВ. В нижней части этого диапазона СКЛ граничат с протонами высокоскоростных потоков солнечного ветра. Частицы СКЛ появляются вследствие солнечных вспышек.
Космические лучи ультравысоких энергий |
Энергия некоторых частиц превышает предел ГЗК (Грайзена — Зацепина — Кузьмина) — теоретический предел энергии для космических лучей 5⋅1019эВ, вызванный их взаимодействием с фотонами реликтового излучения. Несколько десятков таких частиц за год было зарегистрировано обсерваторией AGASA. Эти наблюдения ещё не имеют достаточно обоснованного научного объяснения.
Регистрация космических лучей |
Долгое время после открытия космических лучей, методы их регистрации не отличались от методов регистрации частиц в ускорителях, чаще всего — газоразрядные счётчики или ядерные фотографические эмульсии, поднимаемые в стратосферу или в космическое пространство. Но данный метод не позволяет вести систематические наблюдения частиц с высокой энергией, так как они появляются достаточно редко, а пространство, в котором такой счётчик может вести наблюдения, ограничено его размерами.
Современные обсерватории работают на других принципах. Когда высокоэнергетичная частица входит в атмосферу, она, взаимодействуя с атомами воздуха на первых 100 г/см², рождает целый шквал частиц, в основном пионов и мюонов, которые, в свою очередь, рождают другие частицы, и так далее. Образуется конус из частиц, который называют ливнем. Такие частицы двигаются со скоростью, превышающей скорость света в воздухе, благодаря чему возникает черенковское свечение, регистрируемое телескопами. Такая методика позволяет следить за областями неба площадью в сотни квадратных километров.
Значение для космических полётов |
Визуальный феномен космических лучей |
Космонавты МКС, когда закрывают глаза, не чаще, чем раз в 3 минуты, видят вспышки света[8], возможно, это явление связано с воздействием частиц высоких энергий, попадающих в сетчатку глаза. Однако экспериментально это не подтверждено, возможно, что этот эффект имеет под собой исключительно психологические основы.
Радиация |
Длительное воздействие космической радиации способно очень негативно отразиться на здоровье человека. Для дальнейшей экспансии человечества к иным планетам Солнечной системы следует разработать надёжную защиту от подобных опасностей — учёные из России и США уже ищут способы решения этой проблемы.
См. также |
- Форбуш-эффект
- Широкий атмосферный ливень
Обсерватория Пьер Оже
- Тункинский эксперимент
Примечания |
↑ 12 Мирошниченко Л. И. Космические лучи // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 471—474. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
↑ Космическая радиация. Учебное пособие.
↑ 123 Гинзбург В. Л., Сыроватский С. И. Современное состояние вопроса о происхождении космических лучей // УФН. — 1960. — Т. 71, вып. 7. — С. 411—469.
↑ 12 Дорман, 1975, с. 18.
↑ В. Л. Гинзбург. Космические лучи: 75 лет исследований и перспективы на будущее // Земля и Вселенная. — М.: Наука, 1988. — № 3. — С. 3—9.
↑ Научные открытия России.
↑ Ширков, 1980, с. 236.
↑ Роскосмос. Блог Максима Сураева.
Литература |
Мурзин С. В. Физика космических лучей. — М.: Изд-во МГУ. — 1970.
Мурзин С. В. Введение в физику космических лучей. — М.: Атомиздат. — 1979.- Модель космического пространства. — М.: Изд-во МГУ, в 3-х томах.
- Филоненко А. Д. Радиоастрономический метод измерения потоков космических частиц сверхвысокой энергии (рус.) // УФН. — 2012. — Т. 182. — С. 793—827.
- Дорман Л.И. Экспериментальные и теоретические основы астрофизики космических лучей. — М.: Наука, 1975. — 464 с.
- ред. Ширков Д.В. Физика микромира. — М.: Советская энциклопедия, 1980. — 528 с.
- Панасюк М. И. Странники Вселенной или эхо Большого взрыва. — М.: Век 2, 2005. — 272 с. — ISBN 5-85099-160-3.
Ссылки |
- Космические лучи. Их состав и происхождение
- Cosmic Ray Shower Simulations
- Pierre Auger — Обсерватория наблюдений Космических лучей
- Научно-образовательный открытый проект по исследованию Космических лучей
- Космические лучи самых высоких энергий