Linearization






In mathematics, linearization is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems.[1] This method is used in fields such as engineering, physics, economics, and ecology.




Contents






  • 1 Linearization of a function


  • 2 Example


  • 3 Linearization of a multivariable function


  • 4 Uses of linearization


    • 4.1 Stability analysis


    • 4.2 Microeconomics


    • 4.3 Optimization


    • 4.4 Multiphysics




  • 5 See also


  • 6 References


  • 7 External links


    • 7.1 Linearization tutorials







Linearization of a function


Linearizations of a function are lines—usually lines that can be used for purposes of calculation. Linearization is an effective method for approximating the output of a function y=f(x){displaystyle y=f(x)}y=f(x) at any x=a{displaystyle x=a}x=a based on the value and slope of the function at x=b{displaystyle x=b}x=b, given that f(x){displaystyle f(x)}f(x) is differentiable on [a,b]{displaystyle [a,b]}[a,b] (or [b,a]{displaystyle [b,a]}[b,a]) and that a{displaystyle a}a is close to b{displaystyle b}b. In short, linearization approximates the output of a function near x=a{displaystyle x=a}x=a.


For example, 4=2{displaystyle {sqrt {4}}=2}{sqrt  {4}}=2. However, what would be a good approximation of 4.001=4+.001{displaystyle {sqrt {4.001}}={sqrt {4+.001}}}{sqrt  {4.001}}={sqrt  {4+.001}}?


For any given function y=f(x){displaystyle y=f(x)}y=f(x), f(x){displaystyle f(x)}f(x) can be approximated if it is near a known differentiable point. The most basic requisite is that La(a)=f(a){displaystyle L_{a}(a)=f(a)}L_{a}(a)=f(a), where La(x){displaystyle L_{a}(x)}L_{a}(x) is the linearization of f(x){displaystyle f(x)}f(x) at x=a{displaystyle x=a}x=a. The point-slope form of an equation forms an equation of a line, given a point (H,K){displaystyle (H,K)}(H,K) and slope M{displaystyle M}M. The general form of this equation is: y−K=M(x−H){displaystyle y-K=M(x-H)}y-K=M(x-H).


Using the point (a,f(a)){displaystyle (a,f(a))}(a,f(a)), La(x){displaystyle L_{a}(x)}L_{a}(x) becomes y=f(a)+M(x−a){displaystyle y=f(a)+M(x-a)}y=f(a)+M(x-a). Because differentiable functions are locally linear, the best slope to substitute in would be the slope of the line tangent to f(x){displaystyle f(x)}f(x) at x=a{displaystyle x=a}x=a.


While the concept of local linearity applies the most to points arbitrarily close to x=a{displaystyle x=a}x=a, those relatively close work relatively well for linear approximations. The slope M{displaystyle M}M should be, most accurately, the slope of the tangent line at x=a{displaystyle x=a}x=a.




An approximation of f(x)=x^2 at (x, f(x))


Visually, the accompanying diagram shows the tangent line of f(x){displaystyle f(x)}f(x) at x{displaystyle x}x. At f(x+h){displaystyle f(x+h)}f(x+h), where h{displaystyle h}h is any small positive or negative value, f(x+h){displaystyle f(x+h)}f(x+h) is very nearly the value of the tangent line at the point (x+h,L(x+h)){displaystyle (x+h,L(x+h))}(x+h,L(x+h)).


The final equation for the linearization of a function at x=a{displaystyle x=a}x=a is:


y=(f(a)+f′(a)(x−a)){displaystyle y=(f(a)+f'(a)(x-a))}{displaystyle y=(f(a)+f'(a)(x-a))}


For x=a{displaystyle x=a}x=a, f(a)=f(x){displaystyle f(a)=f(x)}f(a)=f(x). The derivative of f(x){displaystyle f(x)}f(x) is f′(x){displaystyle f'(x)}f'(x), and the slope of f(x){displaystyle f(x)}f(x) at a{displaystyle a}a is f′(a){displaystyle f'(a)}f'(a).



Example


To find 4.001{displaystyle {sqrt {4.001}}}{sqrt  {4.001}}, we can use the fact that 4=2{displaystyle {sqrt {4}}=2}{sqrt  {4}}=2. The linearization of f(x)=x{displaystyle f(x)={sqrt {x}}}f(x)={sqrt {x}} at x=a{displaystyle x=a}x=a is y=a+12a(x−a){displaystyle y={sqrt {a}}+{frac {1}{2{sqrt {a}}}}(x-a)}y={sqrt  {a}}+{frac  {1}{2{sqrt  {a}}}}(x-a), because the function f′(x)=12x{displaystyle f'(x)={frac {1}{2{sqrt {x}}}}}f'(x)={frac  {1}{2{sqrt  {x}}}} defines the slope of the function f(x)=x{displaystyle f(x)={sqrt {x}}}f(x)={sqrt {x}} at x{displaystyle x}x. Substituting in a=4{displaystyle a=4}a=4, the linearization at 4 is y=2+x−44{displaystyle y=2+{frac {x-4}{4}}}y=2+{frac  {x-4}{4}}. In this case x=4.001{displaystyle x=4.001}x=4.001, so 4.001{displaystyle {sqrt {4.001}}}{sqrt  {4.001}} is approximately 2+4.001−44=2.00025{displaystyle 2+{frac {4.001-4}{4}}=2.00025}2+{frac  {4.001-4}{4}}=2.00025. The true value is close to 2.00024998, so the linearization approximation has a relative error of less than 1 millionth of a percent.



Linearization of a multivariable function


The equation for the linearization of a function f(x,y){displaystyle f(x,y)}f(x,y) at a point p(a,b){displaystyle p(a,b)}p(a,b) is:


f(x,y)≈f(a,b)+∂f(x,y)∂x|a,b(x−a)+∂f(x,y)∂y|a,b(y−b){displaystyle f(x,y)approx f(a,b)+left.{frac {partial f(x,y)}{partial x}}right|_{a,b}(x-a)+left.{frac {partial f(x,y)}{partial y}}right|_{a,b}(y-b)}f(x,y)approx f(a,b)+left.{{frac  {{partial f(x,y)}}{{partial x}}}}right|_{{a,b}}(x-a)+left.{{frac  {{partial f(x,y)}}{{partial y}}}}right|_{{a,b}}(y-b)


The general equation for the linearization of a multivariable function f(x){displaystyle f(mathbf {x} )}f(mathbf {x} ) at a point p{displaystyle mathbf {p} }mathbf {p} is:


f(x)≈f(p)+∇f|p⋅(x−p){displaystyle f({mathbf {x} })approx f({mathbf {p} })+left.{nabla f}right|_{mathbf {p} }cdot ({mathbf {x} }-{mathbf {p} })}f({{mathbf  {x}}})approx f({{mathbf  {p}}})+left.{nabla f}right|_{{{mathbf  {p}}}}cdot ({{mathbf  {x}}}-{{mathbf  {p}}})


where x{displaystyle mathbf {x} }mathbf {x} is the vector of variables, and p{displaystyle mathbf {p} }mathbf {p} is the linearization point of interest
.[2]



Uses of linearization


Linearization makes it possible to use tools for studying linear systems to analyze the behavior of a nonlinear function near a given point. The linearization of a function is the first order term of its Taylor expansion around the point of interest. For a system defined by the equation



dxdt=F(x,t){displaystyle {frac {dmathbf {x} }{dt}}=mathbf {F} (mathbf {x} ,t)}{displaystyle {frac {dmathbf {x} }{dt}}=mathbf {F} (mathbf {x} ,t)},

the linearized system can be written as


dxdt≈F(x0,t)+DF(x0,t)⋅(x−x0){displaystyle {frac {dmathbf {x} }{dt}}approx mathbf {F} (mathbf {x_{0}} ,t)+Dmathbf {F} (mathbf {x_{0}} ,t)cdot (mathbf {x} -mathbf {x_{0}} )}{displaystyle {frac {dmathbf {x} }{dt}}approx mathbf {F} (mathbf {x_{0}} ,t)+Dmathbf {F} (mathbf {x_{0}} ,t)cdot (mathbf {x} -mathbf {x_{0}} )}

where x0{displaystyle mathbf {x_{0}} }mathbf {x_{0}} is the point of interest and DF(x0){displaystyle Dmathbf {F} (mathbf {x_{0}} )}{displaystyle Dmathbf {F} (mathbf {x_{0}} )} is the Jacobian of F(x){displaystyle mathbf {F} (mathbf {x} )}{displaystyle mathbf {F} (mathbf {x} )} evaluated at x0{displaystyle mathbf {x_{0}} }mathbf {x_{0}} .



Stability analysis


In stability analysis of autonomous systems, one can use the eigenvalues of the Jacobian matrix evaluated at a hyperbolic equilibrium point to determine the nature of that equilibrium. This is the content of linearization theorem. For time-varying systems, the linearization requires additional justification.[3]



Microeconomics


In microeconomics, decision rules may be approximated under the state-space approach to linearization.[4] Under this approach, the Euler equations of the utility maximization problem are linearized around the stationary steady state.[4] A unique solution to the resulting system of dynamic equations then is found.[4]



Optimization


In mathematical optimization, cost functions and non-linear components within can be linearized in order to apply a linear solving method such as the Simplex algorithm. The optimized result is reached much more efficiently and is deterministic as a global optimum.



Multiphysics


In multiphysics systems—systems involving multiple physical fields that interact with one another—linearization with respect to each of the physical fields may be performed. This linearization of the system with respect to each of the fields results in a linearized monolithic equation system that can be solved using monolithic iterative solution procedures such as the Newton-Raphson method. Examples of this include MRI scanner systems which results in a system of electromagnetic, mechanical and acoustic fields.[5]



See also



  • Linear stability

  • Tangent stiffness matrix

  • Stability derivatives

  • Linearization theorem

  • Taylor approximation

  • Functional equation (L-function)



References





  1. ^ The linearization problem in complex dimension one dynamical systems at Scholarpedia


  2. ^ Linearization. The Johns Hopkins University. Department of Electrical and Computer Engineering Archived 2010-06-07 at the Wayback Machine.


  3. ^ Leonov, G. A.; Kuznetsov, N. V. (2007). "Time-Varying Linearization and the Perron effects". International Journal of Bifurcation and Chaos. 17 (4): 1079–1107. doi:10.1142/S0218127407017732..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  4. ^ abc Moffatt, Mike. (2008) About.com State-Space Approach Economics Glossary; Terms Beginning with S. Accessed June 19, 2008.


  5. ^ Bagwell, S.; Ledger, P. D.; Gil, A. J.; Mallett, M.; Kruip, M. (2017). "A linearised hp–finite element framework for acousto-magneto-mechanical coupling in axisymmetric MRI scanners". International Journal for Numerical Methods in Engineering. 112 (10): 1323–1352. doi:10.1002/nme.5559.




External links



Linearization tutorials


  • Linearization for Model Analysis and Control Design



Popular posts from this blog

Steve Gadd

Лира (музыкальный инструмент)

Сарыагашский район