Астрономия
Комплексная наука | |
Астрономия | |
---|---|
англ. Astronomy | |
Тема | Естествознание |
Предмет изучения | Вселенная |
Период зарождения | XVIII век |
Основные направления | небесная механика, астрофизика, космология, планетология и др. |
Астрономия на Викискладе |
Астроно́мия (от др.-греч. ἄστρον «звезда» и νόμος «закон») — наука о Вселенной, изучающая расположение, движение, структуру, происхождение и развитие небесных тел и систем[1].
В частности, астрономия изучает Солнце и другие звёзды, планеты Солнечной системы и их спутники, экзопланеты, астероиды, кометы, метеороиды, межпланетное вещество, межзвёздное вещество, пульсары, чёрные дыры, туманности, галактики и их скопления, квазары и многое другое[1].
Содержание
1 История
2 Этимология
3 Структура астрономии как научной дисциплины
3.1 Звёздная астрономия
4 Предметы астрономии
5 Задачи астрономии
6 История астрономии
7 Астрономические наблюдения
7.1 Оптическая астрономия
7.2 Инфракрасная астрономия
7.3 Ультрафиолетовая астрономия
7.4 Радиоастрономия
7.5 Рентгеновская астрономия
7.6 Гамма-астрономия
7.7 Астрономия, не связанная с электромагнитным излучением
7.8 Астрометрия и небесная механика
7.9 Внеатмосферная астрономия
7.10 Многоканальная астрономия
8 Теоретическая астрономия
9 Любительская астрономия
10 Астрономия в образовании
11 Коды в системах классификации знаний
12 См. также
13 Примечания
14 Литература
История |
Астрономия — одна из древнейших наук. Доисторические культуры и древнейшие цивилизации оставили после себя многочисленные астрономические артефакты, свидетельствующие о знании ими закономерностей движения небесных тел. В качестве примеров можно привести додинастические древнеегипетские монументы и Стоунхендж. Первые цивилизации вавилонян, греков, китайцев[en], индийцев, майя и инков уже проводили методические наблюдения ночного небосвода. Но только изобретение телескопа позволило астрономии развиться в современную науку. Исторически астрономия включала в себя астрометрию, навигацию по звёздам, наблюдательную астрономию, создание календарей и даже астрологию. В наши дни профессиональная астрономия часто рассматривается как синоним астрофизики.
В XX веке астрономия разделилась на две главные ветви: наблюдательную и теоретическую[en]. Наблюдательная астрономия — это получение наблюдательных данных о небесных телах, которые затем анализируются. Теоретическая астрономия ориентирована на разработку компьютерных, математических или аналитических моделей для описания астрономических объектов и явлений. Эти две ветви дополняют друг друга: теоретическая астрономия ищет объяснения результатам наблюдений, а наблюдательная астрономия даёт материал для теоретических выводов и гипотез и возможность их проверки.
2009 год был объявлен ООН Международным годом астрономии (IYA2009). Основной упор делается на повышении общественной заинтересованности астрономией и её понимания. Это одна из немногих наук, где непрофессионалы всё ещё могут играть активную роль. Любительская астрономия привнесла свой вклад в ряд важных астрономических открытий.
Из всех естественных наук астрономия более других подвергалась нападкам папской курии. Лишь в 1822 году инквизиция формально объявила — в противоречии с прежними воззрениями католической церкви, — что в Риме дозволено печатание книг, в которых изложены суждения о движении Земли и неподвижности Солнца, после чего при издании Индекса запрещённых книг 1835 года из него были исключены имена Коперника, Кеплера и Галилея[2].
Этимология |
Термин «астроно́мия» (др.-греч. ἀστρονομία) образован от древнегреческих слов ἀστήρ, ἄστρον (астер, астрон), «звезда» и νόμος (номос), «обычай, установление, закон»[1].
Структура астрономии как научной дисциплины |
Современная астрономия делится на ряд разделов, которые тесно связаны между собой, поэтому разделение астрономии в некоторой мере условно.
Главнейшими разделами астрономии являются:
астрометрия— изучает видимые положения и движения светил. Раньше роль астрометрии состояла также в высокоточном определении географических координат и времени с помощью изучения движения небесных светил (сейчас для этого используются другие способы). Современная астрометрия состоит из:
- фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звёздных положений и определение числовых значений астрономических параметров, — величин, позволяющих учитывать закономерные изменения координат светил;
сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем;
Теоретическая астрономия даёт методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).
Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем.
Эти три раздела в основном решают первую задачу астрономии (исследование движения небесных тел), и их часто называют классической астрономией.
Астрофизика изучает строение, физические свойства и химический состав небесных объектов. Она делится на: а) практическую (наблюдательную) астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой, на основании законов физики, даются объяснения наблюдаемым физическим явлениям.
Ряд разделов астрофизики выделяется по специфическим методам исследования.
Звёздная астрономия изучает закономерности пространственного распределения и движения звёзд, звёздных систем и межзвёздной материи с учётом их физических особенностей.
Космохимия изучает химический состав космических тел, законы распространённости и распределения химических элементов во Вселенной, процессы сочетания и миграции атомов при образовании космического вещества. Иногда выделяют ядерную космохимию, изучающую процессы радиоактивного распада и изотопный состав космических тел. Нуклеогенез в рамках космохимии не рассматривается.
В этих двух разделах в основном решаются вопросы второй задачи астрономии (строение небесных тел).
Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.
Космология изучает общие закономерности строения и развития Вселенной.
На основании всех полученных знаний о небесных телах последние два раздела астрономии решают её третью задачу (происхождение и эволюция небесных тел).
Курс общей астрономии содержит систематическое изложение сведений об основных методах и главнейших результатах, полученных различными разделами астрономии.
Одним из новых, сформировавшихся только во второй половине XX века, направлений является археоастрономия, которая изучает астрономические познания древних людей и помогает датировать древние сооружения, исходя из явления прецессии Земли.
Звёздная астрономия |
Изучение звёзд и звёздной эволюции имеет фундаментальное значение для нашего понимания Вселенной. Астрономы изучают звёзды с помощью и наблюдений, и теоретических моделей, а сейчас и с помощью компьютерного численного моделирования.
Формирование звёзд происходит в газопылевых туманностях. Достаточно плотные участки туманностей могут сжиматься силой гравитации, разогреваясь за счёт высвобождаемой при этом потенциальной энергии. Когда температура становится достаточно большой, в ядре протозвезды начинаются термоядерные реакции и она становится звездой[3]:264.
Почти все элементы, более тяжелые чем водород и гелий, образуются в звёздах.
Предметы астрономии |
Астрометрия
- Созвездия
- Небесная сфера
- Системы небесных координат
- Время
- Небесная механика
Астрофизика
- Эволюция звёзд
Нейтронные звёзды и чёрные дыры
- Астрофизическая гидродинамика
Галактики
- Млечный Путь
- Строение галактик
- Эволюция галактик
- Активные ядра галактик
Космология
- Красное смещение
- Реликтовое излучение
- Теория Большого взрыва
- Тёмное вещество
- Тёмная энергия
- История астрономии
- Астрономы
- Любительская астрономия
- Астрономические инструменты
- Астрономические обсерватории
- Астрономические символы
- Освоение космоса
- Планетология
- Космонавтика
Задачи астрономии |
Основными задачами астрономии являются[1]:
- Изучение видимых, а затем и действительных положений и движений небесных тел в пространстве, определение их размеров и формы.
- Изучение строения небесных тел, исследование химического состава и физических свойств (плотности, температуры и т. п.) вещества в них.
- Решение проблем происхождения и развития отдельных небесных тел и образуемых ими систем.
- Изучение наиболее общих свойств Вселенной, построение теории наблюдаемой части Вселенной — Метагалактики.
Решение этих задач требует создания эффективных методов исследования — как теоретических, так и практических. Первая задача решается путём длительных наблюдений, начатых ещё в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для сравнительно близких к Земле небесных тел: Луны, Солнца, планет, астероидов и т. д.
Решение второй задачи стало возможным в связи с появлением спектрального анализа и фотографии. Изучение физических свойств небесных тел началось во второй половине XIX века, а основных проблем — лишь в последние годы.
Третья задача требует накопления наблюдаемого материала. В настоящее время таких данных ещё недостаточно для точного описания процесса происхождения и развития небесных тел и их систем. Поэтому знания в этой области ограничиваются только общими соображениями и рядом более или менее правдоподобных гипотез.
Четвёртая задача является самой масштабной и самой сложной. Практика показывает, что для её решения уже недостаточно существующих физических теорий. Необходимо создание более общей физической теории, способной описывать состояние вещества и физические процессы при предельных значениях плотности, температуры, давления. Для решения этой задачи требуются наблюдательные данные в областях Вселенной, находящихся на расстояниях в несколько миллиардов световых лет. Современные технические возможности не позволяют детально исследовать эти области. Тем не менее, эта задача сейчас является наиболее актуальной и успешно решается астрономами ряда стран, в том числе и России.
История астрономии |
С тех пор как на Земле существуют люди, их всегда интересовало то, что они видели на небе. Ещё в глубокой древности они заметили взаимосвязь движения небесных светил по небосводу и периодических изменений погоды. Астрономия тогда была основательно перемешана с астрологией. Окончательное выделение научной астрономии произошло в эпоху Возрождения и заняло долгое время.
Астрономия — одна из старейших наук, возникшая из практических потребностей человечества. По расположению звёзд и созвездий первобытные земледельцы определяли наступления времён года. Кочевые племена ориентировались по Солнцу и звездам. Необходимость в летоисчислении привела к созданию календаря. Есть доказательства, что ещё доисторические люди знали об основных явлениях, связанных с восходом и заходом Солнца, Луны и некоторых звезд. Периодическая повторяемость затмений Солнца и Луны была известна уже очень давно. Среди древнейших письменных источников встречаются описания астрономических явлений, а также примитивные расчетные схемы для предсказания времени восхода и захода ярких небесных тел и методы отсчета времени и ведения календаря. Астрономия успешно развивалась в Древнем Вавилоне, Египте, Китае и Индии. В китайской летописи описывается затмение Солнца, которое состоялось в 3-м тысячелетии до н. э. Теории, которые на основе развитых арифметики и геометрии объясняли и предсказывали движение Солнца, Луны и ярких планет, были созданы в странах Средиземноморья в последние века дохристианской эры и вместе с простыми, но эффективными приборами, служили практическим целям вплоть до эпохи Возрождения.
Особенно большого развития достигла астрономия в Древней Греции. Пифагор впервые пришел к выводу, что Земля имеет шарообразную форму, а Аристарх Самосский высказал предположение, что Земля вращается вокруг Солнца. Гиппарх во II в. до н. э. составил один из первых звездных каталогов. В произведении Птолемея «Альмагест», написанном во II в. н. э., изложена геоцентрическая система мира, которая была общепринятой на протяжении почти полутора тысяч лет. В средневековье астрономия достигла значительного развития в странах Востока. В XV в. Улугбек построил вблизи Самарканда обсерваторию с точными в то время инструментами. Здесь был составлен первый после Гиппарха каталог звёзд. С XVI в. начинается развитие астрономии в Европе. Новые требования выдвигались в связи с развитием торговли и мореплавания и зарождением промышленности, способствовали освобождению науки от влияния религии и привели к ряду крупных открытий.
Рождение современной астрономии связывают с отказом от геоцентрической системы мира Птолемея (II век) и заменой её гелиоцентрической системой Николая Коперника (середина XVI века), с началом исследований небесных тел с помощью телескопа (Галилей, начало XVII века) и открытием закона всемирного притяжения (Исаак Ньютон, конец XVII века). XVIII—XIX века были для астрономии периодом накопления сведений и знаний о Солнечной системе, нашей Галактике и физической природе звёзд, Солнца, планет и других космических тел. Появление крупных телескопов и осуществления систематических наблюдений привели к открытию, что Солнце входит в состав огромной дискообразной системы, состоящей из многих миллиардов звезд — галактики. В начале XX века астрономы обнаружили, что эта система является одной из миллионов подобных ей галактик. Открытие других галактик стало толчком для развития внегалактической астрономии. Исследование спектров галактик позволило Эдвину Хабблу в 1929 году выявить явление «разбегания галактик», которое впоследствии получило объяснения на основе общего расширения Вселенной.
В XX веке астрономия разделилась на две основные ветви: наблюдательную и теоретическую. Наблюдательная астрономия — это получение наблюдательных данных о небесных телах, которые затем анализируются. Теоретическая астрономия ориентирована на разработку моделей (аналитических или компьютерных) для описания астрономических объектов и явлений. Эти две ветви дополняют друг друга: теоретическая астрономия ищет объяснения результатам наблюдений, а наблюдательная астрономия даёт материал для теоретических выводов и гипотез и возможность их проверки.
Научно-техническая революция XX века имела чрезвычайно большое влияние на развитие астрономии в целом и особенно астрофизики. Создание оптических и радиотелескопов с высоким разрешением, применение ракет и искусственных спутников Земли для внеатмосферных астрономических наблюдений привели к открытию новых видов космических тел: радиогалактик, квазаров, пульсаров, источников рентгеновского излучения и т. д.. Были разработаны основы теории эволюции звезд и космогонии Солнечной системы. Достижением астрофизики XX века стала релятивистская космология — теория эволюции Вселенной в целом.
Астрономические наблюдения |
Бо́льшая часть астрономических наблюдений — это регистрация и анализ видимого света и другого электромагнитного излучения[4]. Астрономические наблюдения могут быть разделены в соответствии с областью электромагнитного спектра, в которой проводятся измерения. Некоторые части спектра можно наблюдать с Земли (то есть её поверхности), а другие наблюдения ведутся только на больших высотах или в космосе (в космических аппаратах на орбите Земли). Подробные сведения об этих группах исследований приведены ниже.
Оптическая астрономия |
Оптическая астрономия (которую ещё называют астрономией видимого света) — древнейшая форма исследования космоса[5]. Сначала наблюдения зарисовывали от руки. В конце XIX века и большей части XX века исследования осуществлялись по фотографиям. Сейчас изображения получают цифровыми детекторами, в частности детекторами на основе приборов с зарядовой связью (ПЗС). Хотя видимый свет охватывает диапазон примерно от 4000 Ǻ до 7000 Ǻ (400—700 нанометров)[5], оборудование, применяемое в этом диапазоне, позволяет исследовать ближний ультрафиолетовый и инфракрасный диапазон.
Инфракрасная астрономия |
Инфракрасная астрономия касается регистрации и анализа инфракрасного излучения небесных тел. Хотя длина его волны близка к длине волны видимого света, инфракрасное излучение сильно поглощается атмосферой, кроме того, в этом диапазоне сильно излучает атмосфера Земли. Поэтому обсерватории для изучения инфракрасного излучения должны быть расположены на высоких и сухих местах или в космосе. Инфракрасный спектр полезен для изучения объектов, которые слишком холодны, чтобы излучать видимый свет (например, планеты и газопылевые диски вокруг звёзд). Инфракрасные лучи могут проходить через облака пыли, поглощающие видимый свет, что позволяет наблюдать молодые звезды в молекулярных облаках и ядрах галактик[6]. Некоторые молекулы мощно излучают в инфракрасном диапазоне, и это даёт возможность изучать химический состав астрономических объектов (например, находить воду в кометах)[7].
Ультрафиолетовая астрономия |
Ультрафиолетовая астрономия имеет дело с длинами волн примерно от 100 до 3200 Ǻ (10—320 нанометров)[8]. Свет на этих длинах волн поглощается атмосферой Земли, поэтому исследование этого диапазона выполняют из верхних слоев атмосферы или из космоса. Ультрафиолетовая астрономия лучше подходит для изучения горячих звёзд (классов O и B), поскольку основная часть излучения приходится именно на этот диапазон. Сюда относятся исследования голубых звезд в других галактиках и планетарных туманностей, остатков сверхновых, активных галактических ядер. Однако ультрафиолетовое излучение легко поглощается межзвёздной пылью, поэтому в результаты измерений следует вносить поправку на неё.
Радиоастрономия |
Радиоастрономия — это исследование излучения с длиной волны, большей чем один миллиметр (примерно)[8]. Радиоастрономия отличается от большинства других видов астрономических наблюдений тем, что исследуемые радиоволны можно рассматривать именно как волны, а не как отдельные фотоны. Итак, можно измерить как амплитуду, так и фазу радиоволны, а для коротких волн это не так легко сделать[8].
Хотя некоторые радиоволны излучаются астрономическими объектами в виде теплового излучения, большинство радиоизлучения, наблюдаемого с Земли, является по происхождению синхротронным излучением, которое возникает, когда электроны движутся в магнитном поле[8]. Кроме того, некоторые спектральные линии образуются межзвездным газом, в частности спектральная линия нейтрального водорода длиной 21 см[8].
В радиодиапазоне наблюдается широкое разнообразие космических объектов, в частности сверхновые звезды, межзвездный газ, пульсары и активные ядра галактик[8].
Рентгеновская астрономия |
Рентгеновская астрономия изучает астрономические объекты в рентгеновском диапазоне. Обычно объекты излучают рентгеновское излучение благодаря:
- синхротронному механизму (релятивистские электроны, движущиеся в магнитных полях)
- тепловое излучение от тонких слоёв газа, нагретых выше 107 K (10 миллионов кельвинов — так называемое тормозное излучение);
- тепловое излучение массивных газовых тел, нагретых свыше 107 K (так называемое излучение абсолютно чёрного тела)[8].
Поскольку рентгеновское излучение поглощается атмосферой Земли, рентгеновские наблюдения в основном выполняют из орбитальных станций, ракет или космических кораблей. К известным рентгеновским источникам в космосе относятся: рентгеновские двойные звезды, пульсары, остатки сверхновых, эллиптические галактики, скопления галактик, а также активные ядра галактик[8].
Гамма-астрономия |
Гамма-астрономия — это исследование самого коротковолнового излучения астрономических объектов. Гамма-лучи могут наблюдаться непосредственно (такими спутниками, как Телескоп Комптон) или опосредованно (специализированными телескопами, которые называются атмосферные телескопы Черенкова). Эти телескопы фиксируют вспышки видимого света, образующиеся при поглощении гамма-лучей атмосферой Земли вследствие различных физических процессов вроде эффекта Комптона, а также черенковское излучение[9].
Большинство источников гамма-излучения — это гамма-всплески, которые излучают гамма-лучи всего от нескольких миллисекунд до тысячи секунд. Только 10 % источников гамма-излучения активны долгое время. Это, в частности, пульсары, нейтронные звезды и кандидаты в чёрные дыры в активных галактических ядрах[8].
Астрономия, не связанная с электромагнитным излучением |
С Земли наблюдается не только электромагнитное излучение, но и другие типы излучения.
В нейтринной астрономии для выявления нейтрино используют специальные подземные объекты, такие как SAGE, GALLEX и Камиока II / III[8]. Эти нейтрино приходят главным образом от Солнца, но также от сверхновых звёзд. Кроме того, современные обсерватории могут регистрировать космические лучи, поскольку это частицы очень высокой энергии, дающие при входе в атмосферу Земли каскады вторичных частиц[10]. Кроме того, некоторые будущие детекторы нейтрино будут также непосредственно чувствительны к частицам, рожденным, когда космические лучи попадают в атмосферу Земли[8].
Новым направлением в разновидности методов астрономии может стать гравитационно-волновая астрономия, которая стремится использовать детекторы гравитационных волн для наблюдения компактных объектов. Несколько обсерваторий уже построено, например, лазерный интерферометр гравитационной обсерватории LIGO, но гравитационные волны очень трудно обнаружить, и они до сих пор остаются неуловимыми[11].
Планетарная астрономия занимается не только наземными наблюдениями небесных тел, но и их непосредственным изучением с помощью космических аппаратов, в том числе доставивших на Землю образцы вещества. Кроме того, многие аппараты собирают различную информацию на орбите или на поверхности небесных тел, а некоторые и проводят там различные эксперименты.
Астрометрия и небесная механика |
Астрометрия — один из старейших подразделов астрономии. Она занимается измерениями положения небесных объектов. Точные данные о расположении Солнца, Луны, планет и звезд когда-то играли чрезвычайно важную роль в навигации.
Тщательные измерения положения планет привели к глубокому пониманию гравитационных возмущений, что позволило с высокой точностью рассчитывать их прошлое расположение и предсказывать будущее. Эта отрасль известна как небесная механика. Сейчас отслеживание околоземных объектов позволяет прогнозирования сближения с ними, а также возможные столкновения различных объектов с Землёй[12].
Измерения параллаксов ближайших звёзд — фундамент для определения расстояний в дальнем космосе и измерения масштабов Вселенной. Эти измерения обеспечили основу для определения свойств отдаленных звезд; свойства могут быть сопоставлены с соседними звёздами. Измерения лучевых скоростей и собственных движений небесных тел позволяет исследовать кинематику этих систем в нашей галактике. Астрометрические результаты могут использоваться для измерения распределения темной материи в галактике[13].
В 1990-х годах астрометрические методы измерения звездных колебаний были применены для обнаружения крупных внесолнечных планет (планет на орбитах соседних звёзд)[14].
Внеатмосферная астрономия |
Исследования с помощью космической техники занимают особое место среди методов изучения небесных тел и космической среды. Начало было положено запуском в СССР в 1957 году первого в мире искусственного спутника Земли. Космические аппараты позволили проводить исследования во всех диапазонах длин волн электромагнитного излучения. Поэтому современную астрономию часто называют всеволновой. Внеатмосферные наблюдения позволяют принимать в космосе излучения, которые поглощает или очень меняет земная атмосфера: радиоизлучения некоторых длин волн, не доходят до Земли, а также корпускулярные излучения Солнца и других тел. Исследование этих, ранее недоступных видов излучения звезд и туманностей, межпланетной и межзвездной среды очень обогатило наши знания о физических процессах Вселенной. В частности, были открыты неизвестные ранее источники рентгеновского излучения — рентгеновские пульсары. Много информации о природе отдаленных от нас тел и их систем также получено благодаря исследованиям, выполненным с помощью спектрографов, установленных на различных космических аппаратах.
Многоканальная астрономия |
Многоканальная астрономия использует одновременный приём электромагнитного излучения, гравитационных волн и элементарных частиц, испускаемых одним и тем же космическим объектом или явлением, для его изучения.
Теоретическая астрономия |
Астрономы-теоретики используют широкий спектр инструментов, которые включают аналитические модели (например, политропы для приближенного поведения звезд) и численное моделирование. Каждый из методов имеет свои преимущества. Аналитическая модель процесса, как правило, лучше дает понять суть того, почему это (что-то) происходит. Численные модели могут свидетельствовать о наличии явлений и эффектов, которых, вероятно, иначе не было бы видно[15][16].
Теоретики в области астрономии стремятся создавать теоретические модели и выяснить в исследованиях последствия этих моделирований. Это позволяет наблюдателям искать данные, которые могут опровергнуть модель или помогает в выборе между несколькими альтернативными или противоречивыми моделями. Теоретики также экспериментируют в создании или видоизменении модели с учетом новых данных. В случае несоответствия общая тенденция состоит в попытке достигнуть коррекции результата минимальными изменениями модели. В некоторых случаях большое количество противоречивых данных со временем может привести к полному отказу от модели.
Темы, которые изучают теоретические астрономы: звездная динамика и эволюция галактик, крупномасштабная структура Вселенной, происхождение космических лучей, общая теория относительности и физическая космология, в частности космология струн и астрофизика элементарных частиц. Теория относительности важна для изучения крупномасштабных структур, для которых гравитация играет значительную роль в физических явлениях. Это основа исследований чёрных дыр и гравитационных волн. Некоторые широко принятые и изучены теории и модели в астрономии, теперь включённые в модель Лямбда-CDM, — Большой Взрыв, расширение космоса, темная материя и фундаментальные физические теории.
Любительская астрономия |
Астрономия — одна из наук, где вклад любителей может быть значительным[17]. Общий объём любительских наблюдений больше, чем профессиональных, хотя технические возможности любителей намного меньше. Иногда они самостоятельно строят себе оборудование (как и 2 века назад). Наконец большинство ученых вышли именно из этой среды. Главные объекты наблюдений астрономов-любителей — Луна, планеты, звезды, кометы, метеорные потоки и различные объекты глубокого неба, а именно: звездные скопления, галактики и туманности. Одна из ветвей любительской астрономии, любительская астрофотография, представляет собой фотографирование участков ночного неба. Многие любители специализируются по отдельным объектам, типам объектов или типам событий[18][19].
Большинство любителей работает в видимом спектре, но небольшая часть экспериментирует с другими длинами волн. Это включает использование инфракрасных фильтров на обычных телескопах, а также использование радиотелескопов.
Пионер любительской радиоастрономии — Карл Янский, который начал наблюдать небо в радиодиапазоне в 1930-х годах. Некоторые астрономы-любители используют как домашние телескопы, так и радиотелескопы, которые изначально были построены для астрономических учреждений, но теперь доступны для любителей (как для крупных исследовательских институтов)[20][21].
Астрономы-любители и сейчас продолжают вносить вклад в эту науку. Это одна из немногих дисциплин, где их вклад может быть значительным. Довольно часто они наблюдают покрытия астероидами звёзд, и эти данные используются для уточнения орбит астероидов. Иногда любители находят кометы, а многие из них регулярно наблюдают переменные звёзды. А достижения в области цифровых технологий позволили любителям добиться впечатляющего прогресса в области астрофотографии[22][23][24].
Астрономия в образовании |
С 2008 по 2017 годы астрономия не преподавалась в школах России в виде отдельного предмета[25]. Согласно опросам ВЦИОМ в 2007 году 29 % россиян считали, что не Земля вращается вокруг Солнца, а наоборот — Солнце вращается вокруг Земли, а в 2011 году уже 33 % россиян придерживались этой точки зрения[26].
Коды в системах классификации знаний |
УДК 52
Государственный рубрикатор научно-технической информации (ГРНТИ) (по состоянию на 2001 год): 41 АСТРОНОМИЯ
См. также |
.mw-parser-output .ts-Родственные_проекты{background:#f8f9fa;border:1px solid #a2a9b1;clear:right;float:right;font-size:90%;margin:0 0 1em 1em;padding:.5em .75em}.mw-parser-output .ts-Родственные_проекты th,.mw-parser-output .ts-Родственные_проекты td{padding:.25em 0;vertical-align:middle}.mw-parser-output .ts-Родственные_проекты td{padding-left:.5em}
Портал «Астрономия» | |
Астрономия в Викисловаре | |
Астрономия в Викиучебнике | |
Астрономия в Викитеке | |
Астрономия на Викискладе | |
Астрономия в Викиновостях |
- Любительская астрономия
- Астрономия в России
- Метеоритика
- Список астрономов
- Список кодов обсерваторий
- Международный год астрономии
- День астрономии
- Астрофизика
- Космология
Примечания |
↑ 1234 Кононович и Мороз, 2004, с. 5.
↑ Индекс // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
↑ Звездообразование / Марочник Л. С. // Физика космоса: Маленькая энциклопедия / Редкол.: Р. А. Сюняев (Гл. ред.) и др. — 2-е изд. — М. : Советская энциклопедия, 1986. — С. 262—267. — 783 с. — 70 000 экз.
↑ Electromagnetic Spectrum. NASA. Проверено 8 сентября 2006. Архивировано 5 сентября 2006 года.
↑ 12 Moore, P. Philip's Atlas of the Universe. — Great Britain : George Philis Limited, 1997. — ISBN 0-540-07465-9.
↑ Staff. Why infrared astronomy is a hot topic, ESA (11 September 2003). Архивировано 30 июля 2012 года. Проверено 11 августа 2008.
↑ Infrared Spectroscopy – An Overview, NASA/IPAC. Архивировано 5 августа 2012 года. Проверено 11 августа 2008.
↑ 1234567891011 Allen's Astrophysical Quantities / Cox, A. N.. — New York : Springer-Verlag, 2000. — P. 124. — ISBN 0-387-98746-0.
↑ Penston, Margaret J. The electromagnetic spectrum. Particle Physics and Astronomy Research Council (14 August 2002). Проверено 17 августа 2006. Архивировано 8 сентября 2012 года.
↑ Gaisser, Thomas K. Cosmic Rays and Particle Physics. — Cambridge University Press, 1990. — P. 1–2. — ISBN 0-521-33931-6.
↑ Tammann, G. A.; Thielemann, F. K.; Trautmann, D. Opening new windows in observing the Universe. Europhysics News (2003). Проверено 3 февраля 2010. Архивировано 6 сентября 2012 года.
↑ Calvert, James B. Celestial Mechanics. University of Denver (28 марта 2003). Проверено 21 августа 2006. Архивировано 7 сентября 2006 года.
↑ Hall of Precision Astrometry. University of Virginia Department of Astronomy. Проверено 10 августа 2006. Архивировано 26 августа 2006 года.
↑ Wolszczan, A.; Frail, D. A. (1992). “A planetary system around the millisecond pulsar PSR1257+12”. Nature. 355 (6356): 145—147. Bibcode:1992Natur.355..145W. DOI:10.1038/355145a0..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
↑ Roth H. A Slowly Contracting or Expanding Fluid Sphere and its Stability // Physical Review. — 1932. — Vol. 39, Is. 3. — P. 525–529. — DOI:10.1103/PhysRev.39.525. — .
↑ Eddington A.S. Internal Constitution of the Stars. — Cambridge University Press, 1988. — 407 p. — (Cambridge Science Classics). — ISBN 978-0-521-33708-3.
↑ Mims III, Forrest M. (1999). “Amateur Science—Strong Tradition, Bright Future”. Science. 284 (5411): 55—56. Bibcode:1999Sci...284...55M. DOI:10.1126/science.284.5411.55.Astronomy has traditionally been among the most fertile fields for serious amateurs [...]
↑ The Americal Meteor Society. Проверено 24 августа 2006. Архивировано 22 августа 2006 года.
↑ Lodriguss, Jerry Catching the Light: Astrophotography. Проверено 24 августа 2006. Архивировано 1 сентября 2006 года.
↑ Ghigo, F. Karl Jansky and the Discovery of Cosmic Radio Waves. National Radio Astronomy Observatory (7 февраля 2006). Проверено 24 августа 2006. Архивировано 31 августа 2006 года.
↑ Cambridge Amateur Radio Astronomers. Проверено 24 августа 2006. Архивировано 24 мая 2012 года.
↑ The International Occultation Timing Association. Проверено 24 августа 2006. Архивировано 21 августа 2006 года.
↑ Edgar Wilson Award. IAU Central Bureau for Astronomical Telegrams. Проверено 24 октября 2010. Архивировано 24 октября 2010 года.
↑ American Association of Variable Star Observers. AAVSO. Проверено 3 февраля 2010. Архивировано 2 февраля 2010 года.
↑ Уроки астрономии введут в российских школах с нового учебного года (рус.). Meduza (3 апреля 2017). Проверено 6 октября 2018.
↑ Черепащук А. М. Пришли к торжеству Cредневековья: что дальше? // Комиссия РАН по борьбе с лженаукой и фальсификацией научных исследований В защиту науки. — 2015. — № 16.
Литература |
Кононович Э. В., Мороз В. И. Общий курс Астрономии / Под ред. Иванова В. В.. — 2-е изд. — М.: Едиториал УРСС, 2004. — 544 с. — (Классический университетский учебник). — ISBN 5-354-00866-2. (Проверено 31 октября 2012)
- Стивен Маран. Астрономия для «чайников» = Astronomy For Dummies. — М.: «Диалектика», 2006. — С. 256. — ISBN 0-7645-5155-8.
- Повитухин Б. Г. Астрометрия. Небесная механика: Учебное пособие. — Бийск: НИЦ БиГПИ, 1999. — 90 с.
Astronomy — A History — G. Forbes — 1909 (eLib Project) (недоступная ссылка) (недоступная ссылка с 21-05-2013 [2021 день])
- К. Л. Баев, В. А Шишаков. «Начатки мироведения» (1947)
- К. Фламмарион. Живописная астрономия. — Санкт-Петербург, 1900.
- К. Фламмарион. Жители небесных миров. — С.-Пб: Типография А. Траншели, 1876. — Т. 1—2.
- Клейбер И. А. Астрономия // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Астрогнозия // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.