Mathieu group M12
Algebraic structure → Group theory Group theory | ||||
---|---|---|---|---|
Basic notions
| ||||
Finite groups
| ||||
Modular groups
| ||||
Topological and Lie groups
Infinite dimensional Lie group
| ||||
Algebraic groups
| ||||
In the area of modern algebra known as group theory, the Mathieu group M12 is a sporadic simple group of order
- 26 · 33 · 5 · 11 = 95040 = 12×11×10×9×8
- ≈ 1×105.
Contents
1 History and properties
2 Representations
3 Maximal subgroups
4 Conjugacy classes
5 References
6 External links
History and properties
M12 is one of the 26 sporadic groups and was introduced by Mathieu (1861, 1873). It is a sharply 5-transitive permutation group on 12 objects. Burgoyne & Fong (1968) showed that the Schur multiplier of M12 has order 2 (correcting a mistake in (Burgoyne & Fong 1966) where they incorrectly claimed it has order 1).
The double cover had been implicitly found earlier by Coxeter (1958), who showed that M12 is a subgroup of the projective linear group of dimension 6 over the finite field with 3 elements.
The outer automorphism group has order 2, and the full automorphism group M12.2 is contained in M24 as the stabilizer of a pair of complementary dodecads of 24 points, with outer automorphisms of M12 swapping the two dodecads.
Representations
Frobenius (1904) calculated the complex character table of M12.
M12 has a strictly 5-transitive permutation representation on 12 points, whose point stabilizer is the Mathieu group M11. Identifying the 12 points with the projective line over the field of 11 elements, M12 is generated by the permutations of PSL2(11) together with the permutation (2,10)(3,4)(5,9)(6,7). This permutation representation preserves a Steiner system S(5,6,12) of 132 special hexads, such that each pentad is contained in exactly 1 special hexad, and the hexads are the supports of the weight 6 codewords of the extended ternary Golay code. In fact M12 has two inequivalent actions on 12 points, exchanged by an outer automorphism; these are analogous to the two inequivalent actions of the symmetric group S6 on 6 points.
The double cover 2.M12 is the automorphism group of the extended ternary Golay code, a dimension 6 length 12 code over the field of order 3 of minimum weight 6. In particular the double cover has an irreducible 6-dimensional representation over the field of 3 elements.
The double cover 2.M12 is the automorphism group of any 12×12 Hadamard matrix.
M12 centralizes an element of order 11 in the monster group, as a result of which it acts naturally on a vertex algebra over the field with 11 elements, given as the Tate cohomology of the monster vertex algebra.
Maximal subgroups
There are 11 conjugacy classes of maximal subgroups of M12, 6 occurring in automorphic pairs, as follows:
M11, order 7920, index 12. There are two classes of maximal subgroups, exchanged by an outer automorphism. One is the subgroup fixing a point with orbits of size 1 and 11, while the other acts transitively on 12 points.- S6:2 = M10.2, the outer automorphism group of the symmetric group S6 of order 1440, index 66. There are two classes of maximal subgroups, exchanged by an outer automorphism. One is imprimitive and transitive, acting with 2 blocks of 6, while the other is the subgroup fixing a pair of points and has orbits of size 2 and 10.
- PSL(2,11), order 660, index 144, doubly transitive on the 12 points
- 32:(2.S4), order 432. There are two classes of maximal subgroups, exchanged by an outer automorphism. One acts with orbits of 3 and 9, and the other is imprimitive on 4 sets of 3.
- Isomorphic to the affine group on the space C3 x C3.
- S5 x 2, order 240, doubly imprimitive on 6 sets of 2 points
- Centralizer of a sextuple transposition
Q:S4, order 192, orbits of 4 and 8.
- Centralizer of a quadruple transposition
- 42:(2 x S3), order 192, imprimitive on 3 sets of 4
- A4 x S3, order 72, doubly imprimitive, 4 sets of 3 points.
Conjugacy classes
The cycle shape of an element and its conjugate under an outer automorphism are related in the following way: the union of the two cycle shapes is balanced, in other words invariant under changing each n-cycle to an N/n cycle for some integer N.
Order | Number | Centralizer | Cycles | Fusion |
---|---|---|---|---|
1 | 1 | 95040 | 112 | |
2 | 396 | 240 | 26 | |
2 | 495 | 192 | 1424 | |
3 | 1760 | 54 | 1333 | |
3 | 2640 | 36 | 34 | |
4 | 2970 | 32 | 2242 | Fused under an outer automorphism |
4 | 2970 | 32 | 1442 | |
5 | 9504 | 10 | 1252 | |
6 | 7920 | 12 | 62 | |
6 | 15840 | 6 | 1 2 3 6 | |
8 | 11880 | 8 | 122 8 | Fused under an outer automorphism |
8 | 11880 | 8 | 4 8 | |
10 | 9504 | 10 | 2 10 | |
11 | 8640 | 11 | 1 11 | Fused under an outer automorphism |
11 | 8640 | 11 | 1 11 |
References
Adem, Alejandro; Maginnis, John; Milgram, R. James (1991), "The geometry and cohomology of the Mathieu group M₁₂", Journal of Algebra, 139 (1): 90–133, doi:10.1016/0021-8693(91)90285-G, ISSN 0021-8693, MR 1106342.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
Burgoyne, N.; Fong, Paul (1966), "The Schur multipliers of the Mathieu groups", Nagoya Mathematical Journal, 27: 733–745, ISSN 0027-7630, MR 0197542
Burgoyne, N.; Fong, Paul (1968), "A correction to: "The Schur multipliers of the Mathieu groups"", Nagoya Mathematical Journal, 31: 297–304, ISSN 0027-7630, MR 0219626
Cameron, Peter J. (1999), Permutation Groups, London Mathematical Society Student Texts, 45, Cambridge University Press, ISBN 978-0-521-65378-7
Carmichael, Robert D. (1956) [1937], Introduction to the theory of groups of finite order, New York: Dover Publications, ISBN 978-0-486-60300-1, MR 0075938
Conway, John Horton (1971), "Three lectures on exceptional groups", in Powell, M. B.; Higman, Graham, Finite simple groups, Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969., Boston, MA: Academic Press, pp. 215–247, ISBN 978-0-12-563850-0, MR 0338152 Reprinted in Conway & Sloane (1999, 267–298)
Conway, John Horton; Parker, Richard A.; Norton, Simon P.; Curtis, R. T.; Wilson, Robert A. (1985), Atlas of finite groups, Oxford University Press, ISBN 978-0-19-853199-9, MR 0827219
Conway, John Horton; Sloane, Neil J. A. (1999), Sphere Packings, Lattices and Groups, Grundlehren der Mathematischen Wissenschaften, 290 (3rd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4757-2016-7, ISBN 978-0-387-98585-5, MR 0920369
Coxeter, Harold Scott MacDonald (1958), "Twelve points in PG(5,3) with 95040 self-transformations", Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences, 247: 279–293, doi:10.1098/rspa.1958.0184, ISSN 0962-8444, JSTOR 100667, MR 0120289
Curtis, R. T. (1984), "The Steiner system S(5, 6, 12), the Mathieu group M₁₂ and the "kitten"", in Atkinson, Michael D., Computational group theory. Proceedings of the London Mathematical Society symposium held in Durham, July 30–August 9, 1982., Boston, MA: Academic Press, pp. 353–358, ISBN 978-0-12-066270-8, MR 0760669
Cuypers, Hans, The Mathieu groups and their geometries (PDF)
Dixon, John D.; Mortimer, Brian (1996), Permutation groups, Graduate Texts in Mathematics, 163, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-0731-3, ISBN 978-0-387-94599-6, MR 1409812
Frobenius, Ferdinand Georg (1904), "Über die Charaktere der mehrfach transitiven Gruppen", Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (in German), Königliche Akademie der Wissenschaften, Berlin, 16: 558–571, Reprinted in volume III of his collected works.
Griess, Robert L. Jr. (1998), Twelve sporadic groups, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-662-03516-0, ISBN 978-3-540-62778-4, MR 1707296
Mathieu, Émile (1861), "Mémoire sur l'étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables", Journal de Mathématiques Pures et Appliquées, 6: 241–323
Mathieu, Émile (1873), "Sur la fonction cinq fois transitive de 24 quantités", Journal de Mathématiques Pures et Appliquées (in French), 18: 25–46, JFM 05.0088.01
Thompson, Thomas M. (1983), From error-correcting codes through sphere packings to simple groups, Carus Mathematical Monographs, 21, Mathematical Association of America, ISBN 978-0-88385-023-7, MR 0749038
Witt, Ernst (1938a), "über Steinersche Systeme", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Springer Berlin / Heidelberg, 12: 265–275, doi:10.1007/BF02948948, ISSN 0025-5858
Witt, Ernst (1938b), "Die 5-fach transitiven Gruppen von Mathieu", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 12: 256–264, doi:10.1007/BF02948947
Hughes, Sam (2018), Representation and Character Theory of the Small Mathieu Groups (PDF)
External links
- MathWorld: Mathieu Groups
- Atlas of Finite Group Representations: M12