Уравнение Дирака


















Квантовая механика

Δx⋅Δpx⩾2{displaystyle Delta xcdot Delta p_{x}geqslant {frac {hbar }{2}}}Delta xcdot Delta p_{x}geqslant {frac {hbar }{2}}
Принцип неопределённости


Введение
Математические основы


















См. также: Портал:Физика

Уравнение Дирака — релятивистски-инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено П. Дираком в 1928.




Содержание






  • 1 Вид уравнения


  • 2 Физический смысл


    • 2.1 Электрон, позитрон


    • 2.2 Применение для других частиц


    • 2.3 Уравнение Дирака и квантовая теория поля




  • 3 Вывод уравнения Дирака


  • 4 Природа волновой функции


  • 5 Решение уравнения


    • 5.1 Для частиц


    • 5.2 Для античастиц


    • 5.3 Биспиноры




  • 6 Энергетический спектр


  • 7 Дырочная теория


  • 8 Уравнение Дирака в представлении кватернионов


  • 9 Релятивистски ковариантная форма


    • 9.1 Пояснения


    • 9.2 Запись с использованием «Feynman slash»




  • 10 Дираковские билинейные формы


  • 11 Электромагнитное взаимодействие


    • 11.1 Гамильтониан взаимодействия




  • 12 Лагранжиан


  • 13 См. также


  • 14 Примечания


  • 15 Литература


    • 15.1 Избранные статьи




  • 16 Ссылки





Вид уравнения |


Уравнение Дирака записывается в виде


(mc2α0+c∑j=13αjpj)ψ(x,t)=iℏψt(x,t),{displaystyle left(mc^{2}alpha _{0}+csum _{j=1}^{3}alpha _{j}p_{j}right)psi (mathbf {x} ,t)=ihbar {frac {partial psi }{partial t}}(mathbf {x} ,t),}{displaystyle left(mc^{2}alpha _{0}+csum _{j=1}^{3}alpha _{j}p_{j}right)psi (mathbf {x} ,t)=ihbar {frac {partial psi }{partial t}}(mathbf {x} ,t),}

где m {displaystyle m }m  — масса электрона (или другого фермиона, описываемого уравнением), c {displaystyle c }c  — скорость света, pj=−iℏj{displaystyle p_{j}=-ihbar partial _{j}}p_j = - i hbar partial_j — три оператора компонент импульса (по x, y, z), =h2π{displaystyle hbar ={h over 2pi }} hbar = {h over 2 pi} , h{displaystyle h}h — постоянная Планка, x=(x, y, z) и t пространственные координаты и время соответственно, и ψ(x,t){displaystyle psi (mathbf {x} ,t)}psi(mathbf{x},t) — четырёхкомпонентная комплексная волновая функция (биспинор).


α0,α1,α2,α3 {displaystyle alpha _{0},alpha _{1},alpha _{2},alpha _{3} }alpha _{0},alpha _{1},alpha _{2},alpha _{3}  — линейные операторы над пространством биспиноров, которые действуют на волновую функцию (матрицы Паули). Эти операторы подобраны так, что каждая пара таких операторов антикоммутирует, а квадрат каждого равен единице:




αj=−αi{displaystyle alpha _{i}alpha _{j}=-alpha _{j}alpha _{i},}{displaystyle alpha _{i}alpha _{j}=-alpha _{j}alpha _{i},} где i≠j{displaystyle ineq j}ineq j и индексы i,j {displaystyle i,j }i,j меняются от 0 до 3,


αi2=1{displaystyle alpha _{i}^{2}=1}alpha _{i}^{2}=1 для i {displaystyle i }i от 0 до 3.


В обсуждаемом представлении эти операторы представляются матрицами размера 4×4 (это минимальный размер матриц, для которых выполняются условия антикоммутации), называемыми альфа-матрицами Дирака


  • Весь оператор в скобках в левой части уравнения называется оператором Дирака, точнее, в современной терминологии его следует называть гамильтонианом Дирака, так как оператором Дирака сейчас обычно принято называть ковариантный оператор D, с которым уравнение Дирака записывается в виде =0 (как описано в следующем замечании).

  • В современной физике часто используется ковариантная форма записи[1] уравнения Дирака (подробно см. ниже):

(iℏμμmc2)ψ=0.{displaystyle left(ihbar c,gamma ^{mu },partial _{mu }-mc^{2}right)psi =0.}left(ihbar c , gamma^mu , partial_mu - mc^2 right) psi = 0.


Физический смысл |



Электрон, позитрон |


Из уравнения Дирака следует, что электрон обладает собственным механическим моментом количества движения — спином, равным ħ/2, а также собственным магнитным моментом, равным (без учёта гиромагнитного отношения) магнетону Бора eħ/2mc, которые ранее (1925) были открыты экспериментально (e и m — заряд и масса электрона, с — скорость света, ħ — постоянная Дирака (редуцированная постоянная Планка)). С помощью уравнения Дирака была получена более точная формула для уровней энергии атома водорода (и водородоподобных атомов), включающая тонкую структуру уровней (см. Атом), а также объяснён эффект Зеемана. На основе уравнения Дирака были найдены формулы для вероятностей рассеяния фотонов свободными электронами (комптон-эффекта) и излучения электрона при его торможении (тормозного излучения), получившие экспериментальное подтверждение. Однако последовательное релятивистское описание движения электрона даётся квантовой электродинамикой.


Характерная особенность уравнения Дирака — наличие среди его решений таких, которые соответствуют состояниям с отрицательными значениями энергии для свободного движения частицы (что соответствует отрицательной массе частицы). Это представляло трудность для теории, так как все механические законы для частицы в таких состояниях были бы неверными, переходы же в эти состояния в квантовой теории возможны. Действительный физический смысл переходов на уровни с отрицательной энергией выяснился в дальнейшем, когда была доказана возможность взаимопревращения частиц. Из уравнения Дирака следовало, что должна существовать новая частица (античастица по отношению к электрону) с массой электрона и электрическим зарядом противоположного знака; такая частица была действительно открыта в 1932 К. Андерсоном и названа позитроном. Это явилось огромным успехом теории электрона Дирака. Переход электрона из состояния с отрицательной энергией в состояние с положительной энергией и обратный переход интерпретируются как процесс образования пары электрон-позитрон и аннигиляция такой пары.



Применение для других частиц |


Уравнение Дирака справедливо не только для электронов, но и для других элементарных частиц со спином 1/2 (в единицах ħ) — фермионов, например мюонов, нейтрино.


При этом хорошее соответствие опыту получается при прямом применении уравнения Дирака к простым (а не составным) частицам, как те, которые только что упомянуты.


Для протона и нейтрона (составных частиц, состоящих из кварков, связанных глюонным полем, но также обладающих спином 1/2) оно при прямом применении (как к простым частицам) приводит к неправильным значениям магнитных моментов: магнитный момент «дираковского» протона «должен быть» равен ядерному магнетону eħ/2Мc (М — масса протона), а нейтрона (поскольку он не заряжен) — нулю. Опыт же даёт, что магнитный момент протона примерно в 2,8 раза больше ядерного магнетона, а магнитный момент нейтрона отрицателен и по абсолютной величине составляет около 2/3 от магнитного момента протона. Это явление получило название аномального магнитного момента протона и нейтрона.


Аномальный магнитный момент этих частиц свидетельствует об их внутренней структуре, и является одним из важных экспериментальных подтверждений их кваркового строения.


В действительности данное уравнение применимо для кварков, которые также являются элементарными частицами со спином 1/2. Модифицированное уравнение Дирака можно использовать для описания протонов и нейтронов, которые не являются элементарными частицами (они состоят из кварков).



Уравнение Дирака и квантовая теория поля |


Уравнение Дирака описывает не амплитуду вероятности для одного электрона, как могло бы показаться, а величину, связанную с плотностью заряда и тока дираковской частицы: в силу сохранения заряда сохраняется величина, которую считали полной вероятностью нахождения частицы. Таким образом, уравнение Дирака — с самого начала многочастичное.


Теория, включающая лишь уравнение Дирака, взаимодействующее с классическим внешним электромагнитным полем, не совсем верно принимает в расчёт рождение и уничтожение частиц. Она хорошо предсказывает магнитный момент электрона и тонкую структуру линий в спектре атомов. Она объясняет спин электрона, поскольку два из четырёх решений уравнения соответствуют двум спиновым состояниям электрона. Два оставшихся решений с отрицательной энергией соответствуют античастице электрона (позитрону), предсказанной Дираком исходя из его теории и почти сразу же вслед за этим открытой экспериментально.


Несмотря на эти успехи, такая теория имеет тот недостаток, что она не описывает взаимодействие квантованного электронного поля с квантованным электромагнитным полем, в том числе и рождение/уничтожение частиц — один из фундаментальных процессов релятивистской теории взаимодействующих полей. Эта трудность разрешена в квантовой теории поля. В случае электронов — добавляется квантованное электромагнитное поле, квантование самого электронного поля и взаимодействие этих полей, а полученная теория называется квантовой электродинамикой.



Вывод уравнения Дирака |


Уравнение Дирака — релятивистское обобщение уравнения Шрёдингера:


H|ψ(t)⟩=iℏddt|ψ(t)⟩.{displaystyle Hleft|psi (t)rightrangle =ihbar {d over dt}left|psi (t)rightrangle .} H left| psi (t) rightrangle = i hbar {dover d t} left| psi (t) rightrangle.

Для удобства мы будем работать в координатном представлении, в котором состояние системы задаётся волновой функцией ψ(x,t). В этом представлении уравнение Шрёдингера запишется в виде


(x,t)=iℏψ(x,t)∂t,{displaystyle Hpsi (mathbf {x} ,t)=ihbar {frac {partial psi (mathbf {x} ,t)}{partial t}},}{displaystyle Hpsi (mathbf {x} ,t)=ihbar {frac {partial psi (mathbf {x} ,t)}{partial t}},}

где гамильтониан H теперь действует на волновую функцию.


Мы должны определить гамильтониан так, чтобы он описывал полную энергию системы. Рассмотрим свободный электрон (ни с чем не взаимодействующий, изолированный от всех посторонних полей). Для нерелятивистской модели мы взяли бы гамильтониан аналогичный кинетической энергии в классической механике (не принимая во внимание в этом случае ни релятивистских поправок, ни спина):


H=∑j=13pj22m,{displaystyle H=sum _{j=1}^{3}{frac {p_{j}^{2}}{2m}},} H = sum_{j=1}^3 frac{p_j^2}{2m},

где pj — операторы проекций импульса, где индекс j =1,2,3 обозначает декартовы координаты. Каждый такой оператор действует на волновую функцию как пространственная производная:


pjψ(x,t) =def −iℏψ(x,t)∂xj.{displaystyle p_{j}psi (mathbf {x} ,t) {stackrel {mathrm {def} }{=}} -ihbar ,{frac {partial psi (mathbf {x} ,t)}{partial x_{j}}}.}p_j psi(mathbf{x},t)  stackrel{mathrm{def}}{=}  - i hbar , frac{partialpsi (mathbf{x},t)}{partial x_j}.

Чтобы описать релятивистскую частицу, мы должны найти другой гамильтониан. При этом есть основания предполагать, что оператор импульса сохраняет приведенное только что определение. Согласно релятивистскому соотношению, полная энергия системы выражается как


E=(mc2)2+∑j=13(pjc)2.{displaystyle E={sqrt {(mc^{2})^{2}+sum _{j=1}^{3}(p_{j}c)^{2}}}.}E = sqrt{(mc^2)^2 + sum_{j=1}^3 (p_jc)^2}.

Это приводит к выражению


(mc2)2+∑j=13(pjc)2 ψ=iℏdt.{displaystyle {sqrt {(mc^{2})^{2}+sum _{j=1}^{3}(p_{j}c)^{2}}} psi =ihbar {frac {dpsi }{dt}}.} sqrt{(mc^2)^2 + sum_{j=1}^3 (p_jc)^2}  psi = i hbar frac{dpsi}{d t}.

Это не вполне удовлетворительное уравнение, так как не видно явной лоренц-ковариантности (выражающей формальное равноправие времени и пространственных координат, что является одним из краеугольных камней специальной теории относительности), а кроме того — написанный корень из оператора не выписан явно. Однако возведение в квадрат левой и правой части приводит к явно лоренц-ковариантному уравнению Клейна-Гордона. Дирак предположил, что поскольку правая часть уравнения содержит первую производную по времени, то и левая часть должна иметь только производные первого порядка по пространственным координатам (иначе говоря — операторы импульса в первой степени). Тогда, полагая, что коэффициенты перед производными, какую бы природу они ни имели, — постоянные (вследствие однородности пространства), остается только записать:



iℏdt=[c∑i=13αipi+α0mc2]ψ{displaystyle ihbar {frac {dpsi }{dt}}=left[csum _{i=1}^{3}alpha _{i}p_{i}+alpha _{0}mc^{2}right]psi }ihbar frac{dpsi}{dt} = left[ c sum_{i=1}^3 alpha_i p_i + alpha_0 mc^2 right] psi

— это и есть уравнение Дирака (для свободной частицы).


Однако мы пока не определили коэффициенты αi {displaystyle alpha _{i} }alpha_i . Если верно предположение Дирака, то правая часть, возведенная в квадрат, должна дать


(mc2)2+∑j=13(pjc)2,{displaystyle (mc^{2})^{2}+sum _{j=1}^{3}(p_{j}c)^{2},}{displaystyle (mc^{2})^{2}+sum _{j=1}^{3}(p_{j}c)^{2},}

то есть


(mc2α0+c∑j=13αjpj)2=(mc2)2+∑j=13(pjc)2.{displaystyle left(mc^{2}alpha _{0}+csum _{j=1}^{3}alpha _{j}p_{j},right)^{2}=(mc^{2})^{2}+sum _{j=1}^{3}(p_{j}c)^{2}.} left( mc^2 alpha_0 + c sum_{j=1}^3 alpha_j p_j ,right)^2 <br />
= (mc^2)^2 + sum_{j=1}^3 (p_jc)^2.

Просто раскрывая скобки в левой части получившегося уравнения, получаем следующие условия на α:




αj+αi=0,{displaystyle alpha _{i}alpha _{j}+alpha _{j}alpha _{i}=0,,} <br />
alpha_i alpha_j + alpha_j alpha_i = 0,, для всех i,j=0,1,2,3(i≠j),{displaystyle i,j=0,1,2,3(ineq j),} i,j = 0, 1, 2, 3 (i ne j),<br />


αi2=1,{displaystyle alpha _{i}^{2}=1,,} <br />
alpha_i^2 = 1,, для всех i=0,1,2,3. ,{displaystyle i=0,1,2,3. ,}{displaystyle i=0,1,2,3. ,}


или, сокращенно, записав всё вместе:



αj+αi=2δij {displaystyle alpha _{i}alpha _{j}+alpha _{j}alpha _{i}=2delta _{ij} } alpha_i alpha_j + alpha_j alpha_i = 2 delta_{ij} для  i,j=0,1,2,3,{displaystyle i,j=0,1,2,3,} i,j = 0, 1, 2, 3,

или, ещё короче, пользуясь фигурными скобками для обозначения антикоммутаторов:



i,αj}=2δij {displaystyle left{alpha _{i},alpha _{j}right}=2delta _{ij} }<br />
left{alpha_i , alpha_jright} = 2delta_{ij} для  i,j=0,1,2,3.{displaystyle i,j=0,1,2,3.}  i,j = 0, 1, 2, 3.<br />

где {,} — антикоммутатор, определяемый как {A,B}≡AB+BAδij — символ Кронекера, который принимает значение 1 если два индекса равны и в противном случае 0. Смотрите алгебра Клиффорда.


Поскольку такие соотношения не могут выполняться для обычных чисел (ведь числа коммутируют, а α — нет), остается — проще всего — предположить, что α — это некие линейные операторы или матрицы (тогда единицы и нули в правой части соотношений можно считать соответственно единичными и нулевыми оператором или матрицей) и можно попытаться найти конкретный набор α, воспользовавшись этими соотношениями (и это удается).


Именно здесь впервые становится совершенно ясно, что волновая функция должна быть не однокомпонентной (то есть не скалярной), а векторной, имея в виду векторы какого-то абстрактного «внутреннего» пространства, не связанного прямо с обычным физическим пространством или пространством-временем.


Матрицы должны быть эрмитовы, так чтобы гамильтониан тоже был эрмитовым оператором. Наименьшая размерность матриц, которые удовлетворяют данным выше критериям это комплексные матрицы 4×4, хотя их конкретный выбор (или представление) не однозначен. Эти матрицы с операцией матричного умножения образуют группу. Хотя выбор представления этой группы не влияет на свойства уравнения Дирака, он влияет на физический смысл компонент волновой функции. Волновая функция же, очевидно, должна тогда быть четырёхмерным комплексным абстрактным (не связанным прямо с векторами обычного пространства-времени) векторным полем (то есть биспинорным полем).


Во введении мы привели представление, использованное Дираком. Это представление можно правильно записать как


α0=[I00−I],αj=[0σj0],{displaystyle alpha _{0}={begin{bmatrix}I&0\0&-Iend{bmatrix}},quad alpha _{j}={begin{bmatrix}0&sigma _{j}\sigma _{j}&0end{bmatrix}},}{displaystyle alpha _{0}={begin{bmatrix}I&0\0&-Iend{bmatrix}},quad alpha _{j}={begin{bmatrix}0&sigma _{j}\sigma _{j}&0end{bmatrix}},}

где 0 и I — 2×2 нулевая и единичная матрицы соответственно, и σj (j = 1, 2, 3) — матрицы Паули, являющиеся, кстати, матричным представлением кватернионов, о которых давно известно, что они антикоммутируют.


Гамильтониан в этом уравнении


H=mc2α0+c∑j=13αjpj{displaystyle H=,mc^{2}alpha _{0}+csum _{j=1}^{3}alpha _{j}p_{j}}{displaystyle H=,mc^{2}alpha _{0}+csum _{j=1}^{3}alpha _{j}p_{j}}

называется гамильтонианом Дирака.


  • Для обычного уравнения Дирака в двумерном пространстве или в трехмерном, но с m=0, вместо альфа-матриц достаточно просто матриц Паули; вместо четырёхкомпонентного биспинорного поля при этом роль волновой функции будет играть двухкомпонентное спинорное.


Природа волновой функции |


Поскольку на волновую функцию ψ действуют матрицы 4×4, она должна быть четырёхкомпонентным объектом. Мы увидим в следующем параграфе, что волновая функция состоит из двух степеней свободы, одна из которых соответствует положительным энергиям, а другая отрицательным. Каждая из них имеет ещё по две степени свободы, связанные с проекцией спина на выделенное направление , условно часто обозначаемые словами «вверх» или «вниз».


Мы можем записать волновую функцию в виде столбца:


ψ(x,t) =def [ψ1(x,t)ψ2(x,t)ψ3(x,t)ψ4(x,t)].{displaystyle psi (mathbf {x} ,t) {stackrel {mathrm {def} }{=}} {begin{bmatrix}psi _{1}(mathbf {x} ,t)\psi _{2}(mathbf {x} ,t)\psi _{3}(mathbf {x} ,t)\psi _{4}(mathbf {x} ,t)end{bmatrix}}.}psi ({mathbf  {x}},t) {stackrel  {{mathrm  {def}}}{=}} {begin{bmatrix}psi _{1}({mathbf  {x}},t)\psi _{2}({mathbf  {x}},t)\psi _{3}({mathbf  {x}},t)\psi _{4}({mathbf  {x}},t)end{bmatrix}}.

Дуальную волновую функцию записывают в виде строки:


ψ¯ =defψ¯(x,t) =def ψα0,{displaystyle {bar {psi }} {stackrel {mathrm {def} }{=}}{bar {psi }}(mathbf {x} ,t) {stackrel {mathrm {def} }{=}} psi ^{dagger }alpha ^{0},}{bar  {psi }} {stackrel  {{mathrm  {def}}}{=}}{bar  {psi }}({mathbf  {x}},t) {stackrel  {{mathrm  {def}}}{=}} psi ^{dagger }alpha ^{0},

где


ψ=[ψ1∗(x,t)ψ2∗(x,t)ψ3∗(x,t)ψ4∗(x,t)]{displaystyle psi ^{dagger }={begin{bmatrix}psi _{1}^{*}(mathbf {x} ,t)&psi _{2}^{*}(mathbf {x} ,t)&psi _{3}^{*}(mathbf {x} ,t)&psi _{4}^{*}(mathbf {x} ,t)end{bmatrix}}}psi ^{dagger }={begin{bmatrix}psi _{1}^{*}({mathbf  {x}},t)&psi _{2}^{*}({mathbf  {x}},t)&psi _{3}^{*}({mathbf  {x}},t)&psi _{4}^{*}({mathbf  {x}},t)end{bmatrix}}

символ * обозначает обычное комплексное сопряжение.


Как и для обычной однокомпонентной волновой функции можно ввести квадрат модуля волновой функции, который даёт плотность вероятности как функцию координаты x и времени t. В данном случае роль квадрата модуля играет скалярное произведение волновой функции и дуальной ей, то есть квадрат эрмитовой нормы биспинора:


ψ¯ψ¯(x,t)ψ(x,t)=∑a,b=14ψa∗(x,t)(α0)abψb(x,t).{displaystyle {bar {psi }}psi ={bar {psi }}(mathbf {x} ,t)psi ,(mathbf {x} ,t)=sum _{a,b=1}^{4}psi _{a}^{*}(mathbf {x} ,t)(alpha ^{0})_{ab}psi _{b}(mathbf {x} ,t).}bar{psi} psi = bar{psi}(mathbf{x},t) psi , (mathbf{x},t) = sum_{a, b = 1}^4 psi_a^*(mathbf{x},t) (alpha^0)_{a b} psi_b(mathbf{x},t).

Сохранение вероятности задаёт условие нормировки


ψ¯ψd3x=1.{displaystyle int {bar {psi }}psi ;d^{3}x=1.}int bar{psi} psi ; d^3x = 1.

Привлекая уравнение Дирака можно получить «локальный» ток вероятности:


¯ψ(x,t)=−J.{displaystyle {frac {partial }{partial t}}{bar {psi }}psi ,(mathbf {x} ,t)=-nabla cdot mathbf {J} .}frac{partial}{partial t} bar{psi} psi , (mathbf{x},t) = - nabla cdot mathbf{J}.

Ток вероятности J задаётся как


Jj=cψ¯α.{displaystyle J_{j}=c{bar {psi }}alpha _{j}psi .} J_j = c bar{psi} alpha_j psi.

Умножая J на заряд электрона e, приходим к плотности электрического тока j для электрона.


Значение компонент волновой функции зависит от координатной системы. Дирак показал как ψ преобразуется при изменении координатной системы, включая повороты в трёхмерном пространстве и преобразования между (быстро) движущимися друг относительно друга системами отсчёта. ψ при этом не преобразуется как вектор обычного пространства (или пространства-времени) при вращениях пространства или преобразованиях Лоренца (что само по себе и не удивительно, так как его компоненты изначально не связаны прямо с направлениями в обычном пространстве). Такой объект получил название четырёхкомпонентного дираковского спинора (иначе называемого биспинором — последнее название связано с тем, что первоначально в качестве спиноров рассматривались только двухкомпонентные комплексные объекты, пара которых может образовать биспинор). Биспинор можно интерпретировать как вектор в особом пространстве, называемом обычно «внутренним пространством», не пересекающемся с обычным («внешним») пространством. Однако, как уже было сказано выше, компоненты спинорных волновых функций при преобразовании координат внешнего пространства изменяются вполне определённым образом, хотя и отличающемся от преобразования компонент векторов обычного пространства.


Точности ради следует сказать, что все изменения, связанные с поворотами координат во внешнем пространстве, можно перенести на матрицы α (которые тогда будут выглядеть по-разному для разных внешних систем координат, но будут сохранять свои основные свойства — антикоммутативности и равенства единице квадрата каждой матрицы), в этом случае компоненты (би-)спиноров вообще не будут меняться при поворотах внешнего пространства.



Решение уравнения |


Для решения уравнения в случае свободной частицы привлекается спинор χ{displaystyle chi }chi


χ(1)=[10],χ(2)=[01],{displaystyle chi ^{(1)}={begin{bmatrix}1\0end{bmatrix}},quad quad chi ^{(2)}={begin{bmatrix}0\1end{bmatrix}},}chi^{(1)} = begin{bmatrix}<br />
1\<br />
0 end{bmatrix}, quad quad chi^{(2)} = begin{bmatrix}<br />
0\<br />
1 end{bmatrix} ,

где χ(1){displaystyle chi ^{(1)}}{displaystyle chi ^{(1)}} соответствует спину вверх, а χ(2){displaystyle chi ^{(2)}}{displaystyle chi ^{(2)}} соответствует спину вниз.


Для античастиц верно обратное:


χ(1)=[01],χ(2)=[10].{displaystyle chi ^{*(1)}={begin{bmatrix}0\1end{bmatrix}},quad quad chi ^{*(2)}={begin{bmatrix}1\0end{bmatrix}}.}chi^{*(1)} = begin{bmatrix}<br />
0\<br />
1 end{bmatrix}, quad quad chi^{*(2)} = begin{bmatrix}<br />
1\<br />
0 end{bmatrix} .

Введём также матрицы Паули,


σ1=(0110),σ2=(0−ii0),σ3=(100−1).{displaystyle sigma _{1}={begin{pmatrix}0&1\1&0end{pmatrix}},quad quad sigma _{2}={begin{pmatrix}0&-i\i&0end{pmatrix}},quad quad sigma _{3}={begin{pmatrix}1&0\0&-1end{pmatrix}}.}<br />
sigma_1 = <br />
begin{pmatrix}<br />
0&1\<br />
1&0<br />
end{pmatrix},<br />
quad quad<br />
sigma_2 = <br />
begin{pmatrix}<br />
0&-i\<br />
i&0<br />
end{pmatrix},<br />
quad quad<br />
sigma_3 = <br />
begin{pmatrix}<br />
1&0\<br />
0&-1<br />
end{pmatrix}.<br />


Для частиц |


Решение уравнения Дирака для свободных частиц запишется в виде


ψ=u(p)eip⋅x,{displaystyle psi =u(mathbf {p} )e^{ipcdot x},}{displaystyle psi =u(mathbf {p} )e^{ipcdot x},}

где




p{displaystyle mathbf {p} }{mathbf  {p}} — обычный трёхмерный вектор, а


p и x — 4-векторы.


Биспинор u является функцией момента и спина,


u(s)(p)=E+m[χ(s)σpE+mχ(s)].{displaystyle u^{(s)}(mathbf {p} )={sqrt {E+m}}{begin{bmatrix}chi ^{(s)}\{frac {mathbf {sigma } cdot mathbf {p} }{E+m}}chi ^{(s)}end{bmatrix}}.}{displaystyle u^{(s)}(mathbf {p} )={sqrt {E+m}}{begin{bmatrix}chi ^{(s)}\{frac {mathbf {sigma } cdot mathbf {p} }{E+m}}chi ^{(s)}end{bmatrix}}.}


Для античастиц |


ψ=v(p)eip⋅x{displaystyle psi =v(mathbf {p} )e^{ipcdot x}}{displaystyle psi =v(mathbf {p} )e^{ipcdot x}}

с


v(s)(p)=|E|+m[−σp|E|+mχ(s)χ(s)].{displaystyle v^{(s)}(mathbf {p} )={sqrt {|E|+m}}{begin{bmatrix}{frac {-mathbf {sigma } cdot mathbf {p} }{|E|+m}}chi ^{*(s)}\chi ^{*(s)}end{bmatrix}}.}{displaystyle v^{(s)}(mathbf {p} )={sqrt {|E|+m}}{begin{bmatrix}{frac {-mathbf {sigma } cdot mathbf {p} }{|E|+m}}chi ^{*(s)}\chi ^{*(s)}end{bmatrix}}.}


Биспиноры |


Соотношения полноты для биспиноров u и v:



s=1,2up(s)u¯p(s)=p/+m,{displaystyle sum _{s=1,2}{u_{p}^{(s)}{bar {u}}_{p}^{(s)}}=p!!!/+m,}{displaystyle sum _{s=1,2}{u_{p}^{(s)}{bar {u}}_{p}^{(s)}}=p!!!/+m,}

s=1,2vp(s)v¯p(s)=p/−m,{displaystyle sum _{s=1,2}{v_{p}^{(s)}{bar {v}}_{p}^{(s)}}=p!!!/-m,}{displaystyle sum _{s=1,2}{v_{p}^{(s)}{bar {v}}_{p}^{(s)}}=p!!!/-m,}


где



p/=γμ{displaystyle p!!!/=gamma ^{mu }p_{mu }}{displaystyle p!!!/=gamma ^{mu }p_{mu }} (определение γμ{displaystyle gamma ^{mu }}{displaystyle gamma ^{mu }} — см. чуть ниже).


Энергетический спектр |


Полезно найти собственные значения энергии гамильтониана Дирака. Для того чтобы это сделать, мы должны решить стационарное уравнение:


0(x)=Eψ0(x),{displaystyle Hpsi _{0}(mathbf {x} )=Epsi _{0}(mathbf {x} ),}{displaystyle Hpsi _{0}(mathbf {x} )=Epsi _{0}(mathbf {x} ),}

где ψ0 — независимая от времени часть полной волновой функции


ψ(x,t)=ψ0(x)e−iEt/ℏ,{displaystyle psi (mathbf {x} ,t)=psi _{0}(mathbf {x} )e^{-iEt/hbar },}psi (mathbf{x}, t) = psi_0 (mathbf{x}) e^{- i E t / hbar},

подстановкой которой в нестационарное уравнение Дирака мы получаем стационарное.


Будем искать решение в виде плоских волн. Для удобства выберем в качестве оси движения ось z. Таким образом


ψ0=weipzℏ,{displaystyle psi _{0}=we^{frac {ipz}{hbar }},}{displaystyle psi _{0}=we^{frac {ipz}{hbar }},}

где w — постоянный четырёхкомпонентный спинор и p — импульс частицы, как можно показать действуя оператором импульса на эту волновую функцию. В представлении Дирака уравнение для ψ0 сводится к задаче на собственные значения:


[mc20pc00mc20−pcpc0−mc200−pc0−mc2]w=Ew.{displaystyle {begin{bmatrix}mc^{2}&0&pc&0\0&mc^{2}&0&-pc\pc&0&-mc^{2}&0\0&-pc&0&-mc^{2}end{bmatrix}}w=Ew.} begin{bmatrix} mc^2 & 0 & pc & 0 \ 0 & mc^2 & 0 & -pc \ pc & 0 & -mc^2 & 0 \ 0 & -pc & 0 & -mc^2 end{bmatrix} w = E w.

Для каждого значения p, существует два двумерных пространства собственных значений. Одно пространство собственных значений содержит положительные собственные значения, а другое — отрицательные в виде


(p)=±(mc2)2+(pc)2.{displaystyle E_{pm }(p)=pm {sqrt {(mc^{2})^{2}+(pc)^{2}}}.}E_pm (p) = pm sqrt{(mc^2)^2 + (pc)^2}.

пространство с положительными собственными значениями порождается собственными состояниями:


{[pc0ϵ0],[0pc0−ϵ]}×2+(pc)2{displaystyle left{{begin{bmatrix}pc\0\epsilon \0end{bmatrix}},,,{begin{bmatrix}0\pc\0\-epsilon end{bmatrix}}right}times {frac {1}{sqrt {epsilon ^{2}+(pc)^{2}}}}}left{ begin{bmatrix}pc \ 0 \ epsilon \ 0 end{bmatrix} ,,, begin{bmatrix}0 \ pc \ 0 \ - epsilon end{bmatrix} right} times frac{1}{sqrt{epsilon^2+(pc)^2}}

и для отрицательных:


{[−ϵ0pc0],[0ϵ0pc]}×2+(pc)2,{displaystyle left{{begin{bmatrix}-epsilon \0\pc\0end{bmatrix}},,,{begin{bmatrix}0\epsilon \0\pcend{bmatrix}}right}times {frac {1}{sqrt {epsilon ^{2}+(pc)^{2}}}},}{displaystyle left{{begin{bmatrix}-epsilon \0\pc\0end{bmatrix}},,,{begin{bmatrix}0\epsilon \0\pcend{bmatrix}}right}times {frac {1}{sqrt {epsilon ^{2}+(pc)^{2}}}},}

где


ϵ =def |E|−mc2.{displaystyle epsilon {stackrel {mathrm {def} }{=}} |E|-mc^{2}.}epsilon  stackrel{mathrm{def}}{=}  |E| - mc^2.

Первое порождающее собственное состояние в каждом собственном пространстве имеет положительную проекцию спина на z направление («спин вверх»), и второе собственное состояние имеет спин указывающий в противоположном направлении −z («спин вниз»).


В нерелятивистском пределе ε компонента спинора уменьшается до кинетической энергии частицы, которая пренебрежимо мала в сравнении с pc:


ϵp22m≪pc.{displaystyle epsilon sim {frac {p^{2}}{2m}}ll pc.}epsilon sim frac{p^2}{2m} ll  pc.

В этом пределе четырёхкомпонентную волновую функцию можно интерпретировать как относительную амплитуду (i) спин вверх с положительной энергией, (ii) спин вниз с положительной энергией, (iii) спин вверх с отрицательной энергией, и (iv) спин вниз с отрицательной энергией. Это описание не точно в релятивистском случае, где ненулевые компоненты спинора имеют тот же порядок величины.



Дырочная теория |


Найденные в предыдущей секции решения c отрицательными энергиями проблематичны, поскольку предполагалось, что частица имеет положительную энергию. Математически говоря, однако, кажется, нет никакой причины для нас, чтобы отклонить решения отрицательной энергии. Так как они существуют, мы не можем просто игнорировать их, как только мы включаем взаимодействие между электроном и электромагнитным полем, любой электрон, помещенный в состояние с положительной энергией перешёл бы в состояние с отрицательной энергией успешно понизив энергию, испуская лишнюю энергию в форме фотонов. Реальные электроны очевидно не ведут себя таким образом.


Чтобы справляться с этой проблемой, Дирак вводил гипотезу, известную как дырочная теория, что вакуум — это многочастичное квантовое состояние, в котором все состояния с отрицательной энергией заняты. Это описание вакуума как «море» электронов называют морем Дирака. Поскольку принцип запрета Паули запрещает электронам занимать то же самое состояние, любой дополнительный электрон был бы вынужден занять состояние с положительной энергией, и электроны с положительной энергии не будут переходить в состояния с отрицательной энергией.


Дирак далее рассуждал, что если состояния с отрицательной энергией не полностью заполнены, каждое незанятое состояние — называемое дыркой — вело бы себя как положительно заряженная частица. Отверстие обладает «положительной» энергией, так как энергия необходима для создания пары частица-дырка из вакуума. Как отмечено выше, Дирак первоначально думал, что дырка могла бы быть протоном, но Вейль указал, что дырка должна вести себя, как будто она имеет ту же самую массу как электрон, тогда как протон более чем в 1800 раз тяжелее. Дырка была в конечном счете идентифицирована как позитрон, экспериментально обнаруженный Карлом Андерсоном в 1932.


Описание «вакуума» через бесконечное море электронов отрицательной энергии не вполне удовлетворительно. Бесконечно отрицательные вклады от моря электронов отрицательной энергии должны быть сокращены с бесконечной положительной «голой» энергией и вкладом в плотность заряда, и ток, идущий от моря электронов отрицательной энергии точно сокращается с бесконечным положительным фоном «желе» так, чтобы полная электрическая плотность заряда вакуума равнялась нулю. В квантовой теории поля, преобразование Боголюбова операторов рождения и уничтожения (превращающий занятое электронное состояние с отрицательной энергией в незаполненное позитронное состояние с положительной энергией и незанятое электронное состояние с отрицательной энергией в занятое позитронное состояние с положительной энергией) позволяет нам обходить формализм моря Дирака даже при том, что, формально, эти подходы эквивалентны.


В определённых применениях в физике твёрдого тела, однако, основные понятия «дырочной теории» являются корректными. Море электронов проводимости в проводнике, называют морем Ферми, содержит электроны с энергиями до химического потенциала системы. Незаполненные состояние в море Ферми ведут себя как положительно-заряженный электроны, хотя это «дырка», а не «позитрон». Отрицательный заряд моря Ферми уравновешен положительно-заряженной ионной решеткой материала.



Уравнение Дирака в представлении кватернионов |


Уравнение Дирака можно просто записать в представлении, использующем кватернионы. Мы запишем его в терминах представления двух полей над кватернионами для правых (Ψ) и левых (Φ) электронов:



i+i∂+j∂+k∂=meϕj,{displaystyle partial _{t}psi i+ipartial _{x}psi +jpartial _{y}psi +kpartial _{z}psi =m_{e}phi j,} partial_tpsi i + i partial_x psi+j partial_y psi + kpartial_z psi= m_e phi j,

i−i∂j∂k∂=meψj.{displaystyle partial _{t}phi i-ipartial _{x}phi -jpartial _{y}phi -kpartial _{z}phi =m_{e}psi j.} partial_tphi i - i partial_x phi-j partial_y phi- kpartial_z phi = m_e psi j.


Здесь важно, с какой стороны единичные кватернионы умножаются. Заметим, что массовый и временной члены умножаются справа на кватернионы. Это представление уравнения Дирака используется в компьютерном моделировании.



Релятивистски ковариантная форма |


Ковариантная запись уравнения Дирака для свободной частицы выглядит так:


(iℏc∑μ=03γμμmc2)ψ=0,{displaystyle left(ihbar c,sum _{mu =0}^{3};gamma ^{mu },partial _{mu }-mc^{2}right)psi =0,}left(ihbar c , sum_{mu=0}^3 ; gamma^mu , partial_mu - mc^2 right) psi = 0,

или, используя правило Эйнштейна суммирования по повторяющемуся индексу, так:


(iℏμμmc2)ψ=0.{displaystyle left(ihbar c,gamma ^{mu },partial _{mu }-mc^{2}right)psi =0.}left(ihbar c , gamma^mu , partial_mu - mc^2 right) psi = 0.


Пояснения |


Часто полезно бывает использовать уравнение Дирака в релятивистски ковариантной форме, в которой пространственные и временные координаты рассматриваются формально равноправно.


Чтобы сделать это сначала вспомним, что оператор импульса p действует как пространственная производная:


(x,t)=−iℏψ(x,t).{displaystyle mathbf {p} psi (mathbf {x} ,t)=-ihbar nabla psi (mathbf {x} ,t).}mathbf{p} psi(mathbf{x},t) = - i hbar nabla psi(mathbf{x},t).

Умножая уравнение Дирака с каждой стороны на α0 (вспоминая что α0²=I) и подставляя его в определение для p, получим


[iℏc(α0∂c∂t+∑j=13αj∂xj)−mc2]ψ=0.{displaystyle left[ihbar cleft(alpha _{0}{frac {partial }{cpartial t}}+sum _{j=1}^{3}alpha _{0}alpha _{j}{frac {partial }{partial x_{j}}}right)-mc^{2}right]psi =0.} left[ ihbar c left(alpha_0 frac{partial}{c partial t} + sum_{j=1}^3 alpha_0 alpha_j frac{partial}{partial x_j} right) - mc^2 right] psi = 0.

Теперь определим четыре гамма матрицы:


γ0 =def α0,γj =def αj.{displaystyle gamma ^{0} {stackrel {mathrm {def} }{=}} alpha _{0},,quad gamma ^{j} {stackrel {mathrm {def} }{=}} alpha _{0}alpha _{j}.} gamma^0  stackrel{mathrm{def}}{=}  alpha_0 ,,quad gamma^j  stackrel{mathrm{def}}{=}  alpha_0 alpha_j.

Эти матрицы обладают тем свойством, что


μν}=2ημνI,μ=0,1,2,3,{displaystyle left{gamma ^{mu },gamma ^{nu }right}=2eta ^{mu nu }cdot I,,quad mu ,nu =0,1,2,3,}{displaystyle left{gamma ^{mu },gamma ^{nu }right}=2eta ^{mu nu }cdot I,,quad mu ,nu =0,1,2,3,}

где η метрика плоского пространства. Эти соотношения определяют алгебру Клиффорда называемую алгеброй Дирака.


Уравнение Дирака теперь можно записать используя четыре-вектор x = (ct,x), как


(iℏc∑μ=03γμμmc2)ψ=0.{displaystyle left(ihbar c,sum _{mu =0}^{3};gamma ^{mu },partial _{mu }-mc^{2}right)psi =0.}left(ihbar c , sum_{mu=0}^3 ; gamma^mu , partial_mu - mc^2 right) psi = 0.

В этой форме уравнение Дирака можно получить с помощью нахождения экстремума действия


S=∫ψ¯(iℏc∑μγμμmc2)ψd4x,{displaystyle {mathcal {S}}=int {bar {psi }}(ihbar c,sum _{mu }gamma ^{mu }partial _{mu }-mc^{2})psi ,d^{4}x,}{displaystyle {mathcal {S}}=int {bar {psi }}(ihbar c,sum _{mu }gamma ^{mu }partial _{mu }-mc^{2})psi ,d^{4}x,}

где


ψ¯ =def ψγ0{displaystyle {bar {psi }} {stackrel {mathrm {def} }{=}} psi ^{dagger }gamma _{0}}barpsi  stackrel{mathrm{def}}{=}  psi^dagger gamma_0

называется дираковской присоединённой матрицей для ψ. Это основа для использования уравнения Дирака в квантовой теории поля.


В этой форме электромагнитное взаимодействие можно просто добавить расширив частную производную до калибровочноковариантной производной:


μ=∂μieAμ.{displaystyle partial _{mu }rightarrow D_{mu }=partial _{mu }-ieA_{mu }.}partial_mu rightarrow D_mu = partial_mu - i e A_mu.


Запись с использованием «Feynman slash» |


Иногда используется запись с использованием «перечёркнутых матриц» («Feynman slash»). Приняв обозначение


a/↔μγμ,{displaystyle a!!!/leftrightarrow sum _{mu }gamma ^{mu }a_{mu },}{displaystyle a!!!/leftrightarrow sum _{mu }gamma ^{mu }a_{mu },}

видим, что уравнение Дирака можно записать как


(iℏc∂/−mc2)ψ=0{displaystyle (ihbar c,partial !!!/-mc^{2})psi =0}(i hbar c , partial!!!/ - mc^2) psi = 0

и выражение для действия записывается в виде


S=∫ψ¯(iℏc∂/−mc2)ψd4x.{displaystyle {mathcal {S}}=int {bar {psi }}(ihbar c,partial !!!/-mc^{2})psi ,d^{4}x.}mathcal{S} = int barpsi(i hbar c , partial !!!/ - mc^2)psi , d^4 x.




Дираковские билинейные формы |


Имеется пять различных (нейтральных) дираковских билинейных форм без производных:



  • (S) скаляр: ψ¯ψ{displaystyle {bar {psi }}psi }bar{psi} psi (скаляр, P-чётный)

  • (P) псевдоскаляр: ψ¯γ{displaystyle {bar {psi }}gamma ^{5}psi }bar{psi} gamma^5 psi (скаляр, P-нечётный)

  • (V) вектор: ψ¯γμψ{displaystyle {bar {psi }}gamma ^{mu }psi }bar{psi} gamma^mu psi (вектор, P-чётный)

  • (A) аксиальный вектор: ψ¯γμγ{displaystyle {bar {psi }}gamma ^{mu }gamma ^{5}psi }bar{psi} gamma^mu gamma^5 psi (вектор, P-нечётный)

  • (T) тензор: ψ¯σμνψ{displaystyle {bar {psi }}sigma ^{mu nu }psi }bar{psi} sigma^{munu} psi (антисимметричный тензор)


где σμν=i2[γμν]−{displaystyle sigma ^{mu nu }={frac {i}{2}}left[gamma ^{mu },gamma ^{nu }right]_{-}}sigma^{munu}=frac{i}{2} left[gamma^{mu},gamma^{nu}right]_{-} и γ5=γ5=i4!ϵμνρλγμγνγργλ=iγ3{displaystyle gamma ^{5}=gamma _{5}={frac {i}{4!}}epsilon _{mu nu rho lambda }gamma ^{mu }gamma ^{nu }gamma ^{rho }gamma ^{lambda }=igamma ^{0}gamma ^{1}gamma ^{2}gamma ^{3}}gamma^{5}=gamma_{5}=frac{i}{4!}epsilon_{munurholambda}gamma^{mu}gamma^{nu}gamma^{rho}gamma^{lambda}=igamma^{0}gamma^{1}gamma^{2}gamma^{3} .



Электромагнитное взаимодействие |


До сих пор мы рассматривали электрон, на который не действуют никакие внешние поля. По аналогии с гамильтонианом заряженной частицы в классической электродинамике, мы можем изменить гамильтониан Дирака так, чтобы включить эффект электромагнитного поля. Переписанный гамильтониан — (в единицах СИ):


H=α0mc2+∑j=13αj[pj−eAj(x,t)]c+eφ(x,t),{displaystyle H=alpha _{0}mc^{2}+sum _{j=1}^{3}alpha _{j}left[p_{j}-eA_{j}(mathbf {x} ,t)right]c+evarphi (mathbf {x} ,t),}{displaystyle H=alpha _{0}mc^{2}+sum _{j=1}^{3}alpha _{j}left[p_{j}-eA_{j}(mathbf {x} ,t)right]c+evarphi (mathbf {x} ,t),}

где e — электрический заряд электрона (здесь принято соглашение, что знак e отрицателен), а A и φ — электромагнитные векторный и скалярный потенциалы, соответственно.


Полагая φ = 0 и работая в нерелятивистском пределе, Дирак, нашёл для двух верхних компонент в положительной области энергий волновые функции (которые, как обсуждено ранее, являются доминирующими компонентами в нерелятивистском пределе):



(12m∑j|pj−eAj(x,t)|2−e2mc∑jBj(x))[ψ2]{displaystyle left({frac {1}{2m}}sum _{j}|p_{j}-eA_{j}(mathbf {x} ,t)|^{2}-{frac {hbar e}{2mc}}sum _{j}sigma _{j}B_{j}(mathbf {x} )right){begin{bmatrix}psi _{1}\psi _{2}end{bmatrix}}} left( frac{1}{2m} sum_j |p_j - e A_j(mathbf{x}, t)|^2 - frac{hbar e}{2mc} sum_j sigma_j B_j(mathbf{x}) right) begin{bmatrix}psi_1 \ psi_2 end{bmatrix}
=(E−mc2)[ψ2],{displaystyle =(E-mc^{2}){begin{bmatrix}psi _{1}\psi _{2}end{bmatrix}},}{displaystyle =(E-mc^{2}){begin{bmatrix}psi _{1}\psi _{2}end{bmatrix}},}

где B = {displaystyle nabla }nabla × A — магнитное поле действующее на частицу. Это уравнение Паули для нерелятивистских частиц с полуцелым спином, с магнитным моментом e/2mc{displaystyle hbar e/2mc}hbar e/2mc (то есть, g-фактор равняется 2). Фактический магнитный момент электрона больше чем это значение, хотя только примерно на 0,12 %. Несоответствие происходит из-за квантовых колебаний в электромагнитного поля, которыми пренебрегли. См. вершинная функция.


В течение нескольких лет после открытия уравнения Дирака, большинство физиков полагало, что оно также описывает протон и нейтрон, которые являются фермионами с полуцелым спином. Однако, начинаясь с экспериментов Стерна и Фриша в 1933, найденные магнитные моменты этих частиц не совпадают значительно с предсказанными из уравнения Дирака значениями. Протон имеет магнитный момент, в 2.79 раза больший чем предсказанный (с протонной массой, вставленной для m в вышеупомянутые формулы), то есть, g-фактор равен 5.58. Нейтрон, который является электрически нейтральным, имеет g-фактор−3.83 . Эти «аномальные магнитные моменты» были первым экспериментальным признаком, что протон и нейтрон не элементарные (а составные или, говоря более общим образом, имеющие некоторую внутреннюю структуру) частицы. Впоследствии оказалось, что их можно считать состоящими из меньших частиц, названных кварками, связанными, как полагают, глюонным полем. Кварки имеют полуцелый спин и, насколько известно, точно описываются уравнением Дирака.



Гамильтониан взаимодействия |


Заслуживает внимания факт, что гамильтониан может быть записан как сумма двух слагаемых:


H=Hfree+Hint,{displaystyle H=H_{mathrm {free} }+H_{mathrm {int} },}{displaystyle H=H_{mathrm {free} }+H_{mathrm {int} },}

где Hfree — гамильтониан Дирака для свободного электрона и Hint — гамильтониан взаимодействия электрона с электромагнитным полем. Последний запишется в виде


Hint=eφ(x,t)−ec∑j=13αjAj(x,t).{displaystyle H_{mathrm {int} }=evarphi (mathbf {x} ,t)-ecsum _{j=1}^{3}alpha _{j}A_{j}(mathbf {x} ,t).}H_{mathrm{int}} = e varphi(mathbf{x}, t) - ec sum_{j=1}^3 alpha_j A_j(mathbf{x}, t).

Он имеет математическое ожидание (среднее)


Hint⟩=∫ψHintψd3x=∫φi=13jiAi)d3x,{displaystyle langle H_{mathrm {int} }rangle =int ,psi ^{dagger }H_{mathrm {int} }psi ,d^{3}x=int ,left(rho varphi -sum _{i=1}^{3}j_{i}A_{i}right),d^{3}x,}{displaystyle langle H_{mathrm {int} }rangle =int ,psi ^{dagger }H_{mathrm {int} }psi ,d^{3}x=int ,left(rho varphi -sum _{i=1}^{3}j_{i}A_{i}right),d^{3}x,}

где ρ — плотность электрического заряда и j — плотность электрического тока, определённые через ψ. Подынтегральная функция в последнем интеграле — плотность энергии взаимодействия — лоренц-инвариантная скалярная величина, что легко увидеть, записав в терминах четырёхмерной плотности тока j = (ρc, j) и четырёхмерного электромагнитного потенциала A = (φ/c, A) — каждый из которых является 4-вектором, а следовательно их скалярное произведение инвариантно. И энергия взаимодействия записывается как интеграл по пространству от этого инварианта:


Hint⟩=∫(∑μ=03ημν)d3x,{displaystyle langle H_{mathrm {int} }rangle =int ,left(sum _{mu ,nu =0}^{3}eta ^{mu nu }j_{mu }A_{nu }right);d^{3}x,}{displaystyle langle H_{mathrm {int} }rangle =int ,left(sum _{mu ,nu =0}^{3}eta ^{mu nu }j_{mu }A_{nu }right);d^{3}x,}

где η — метрика плоского пространства Минковского (лоренцева метрика пространства-времени):



η00=1, {displaystyle eta ^{00}=1, }eta^{00} = 1,

ηii=−1(i=1,2,3),{displaystyle eta ^{ii};=-1quad ,(i=1,2,3),}eta^{ii} ;= -1 quad, (i=1,2,3),

ημν=0    (μ=0,1,2,3;μν).{displaystyle eta ^{mu nu }=0 (mu ,nu =0,1,2,3;mu neq nu ).}eta^{munu} = 0     (mu, nu = 0,1,2,3; mu ne nu).


А следовательно — проинтегрированная по времени энергия взаимодействие даст лоренц-инвариантный член в действии (так как повороты и преобразования Лоренца не меняют четырёхмерный объём).



Лагранжиан |


Классическая плотность лагранжиана фермиона с полуцелым спином с массой m задаётся


L=ψ¯(iγμμm)ψ,{displaystyle {mathcal {L}}={overline {psi }}left(igamma ^{mu }partial _{mu }-mright)psi ,}{displaystyle {mathcal {L}}={overline {psi }}left(igamma ^{mu }partial _{mu }-mright)psi ,}

где ψ¯γ0.{displaystyle {overline {psi }}=psi ^{dagger }gamma ^{0}.}{displaystyle {overline {psi }}=psi ^{dagger }gamma ^{0}.}


Для получения уравнений движения можно подставить этот лагранжиан в уравнения Эйлера — Лагранжа:


μ(∂L∂(∂μψσ))−L∂ψσ=0.{displaystyle partial _{mu }left({frac {partial L}{partial (partial _{mu }psi _{sigma })}}right)-{frac {partial L}{partial psi _{sigma }}}=0.}{displaystyle partial _{mu }left({frac {partial L}{partial (partial _{mu }psi _{sigma })}}right)-{frac {partial L}{partial psi _{sigma }}}=0.}

Оценив два члена:



L∂(∂μψσ)=ψ¯σ(iγμσ,{displaystyle {frac {partial L}{partial (partial _{mu }psi _{sigma })}}={overline {psi }}_{sigma ^{prime }}left(igamma ^{mu }right)_{sigma ^{prime }sigma },}{displaystyle {frac {partial L}{partial (partial _{mu }psi _{sigma })}}={overline {psi }}_{sigma ^{prime }}left(igamma ^{mu }right)_{sigma ^{prime }sigma },}

L∂ψσ=−¯σ,{displaystyle {frac {partial L}{partial psi _{sigma }}}=-m{overline {psi }}_{sigma },}{displaystyle {frac {partial L}{partial psi _{sigma }}}=-m{overline {psi }}_{sigma },}


И собрав оба результата, получим уравнение


i∂μψ¯γμ+mψ¯=0,{displaystyle ipartial _{mu }{overline {psi }}gamma ^{mu }+m{overline {psi }}=0,}{displaystyle ipartial _{mu }{overline {psi }}gamma ^{mu }+m{overline {psi }}=0,}

которое идентично уравнению Дирака:


μμψ=0.{displaystyle igamma ^{mu }partial _{mu }psi -mpsi =0.}{displaystyle igamma ^{mu }partial _{mu }psi -mpsi =0.}


См. также |



  • Уравнение Клейна — Гордона

  • Уравнения Прока

  • Уравнение Паули

  • Уравнение Рариты — Швингера

  • Квантовая электродинамика

  • Уравнение Дирака для графена

  • Zitterbewegung



Примечания |





  1. Поскольку и форма с альфа-матрицами лоренц-ковариантна, правильнее называть форму с гамма-матрицами просто четырёхмерной (а при замене обычных производных на ковариантные она даст общековариантную запись уравнения Дирака).




Литература |



  • Бьёркен Дж. Д., Дрелл С. Д. Релятивистская квантовая теория. — М.: Наука, 1978. — Т. 1. — 296 с.

  • Дайсон Ф. Релятивистская квантовая механика. — Ижевск: РХД, 2009. — 248 с.

  • Дирак П. А. М. Принципы квантовой механики. — М.: Наука, 1979. — 440 с.

  • Дирак П. А. М. Релятивистское волновое уравнение электрона (рус.) // Успехи физических наук. — 1979. — Т. 129, вып. 4. — С. 681—691.

  • Зи Э. Квантовая теория поля в двух словах. — Ижевск: РХД, 2009. — 632 с.

  • Пескин М., Шрёдер Д. Введение в квантовую теорию поля. — Ижевск: РХД, 2001. — 784 с.

  • Шифф Л. Квантовая механика. — М.: ИЛ, 1959. — 476 с.

  • Shankar R. Principles of Quantum Mechanics. — Plenum, 1994.

  • Thaller B. The Dirac Equation. — Springer, 1992.


  • Уравнение Дирака в «Физической энциклопедии»



Избранные статьи |




  • P.A.M. Dirac «The Quantum Theory of the Electron», Proc. R. Soc. A117 610 (1928), doi: http://doi.org/10.1098/rspa.1928.0023 — link to the volume of the Proceedings of the Royal Society of London containing the article at page 610


  • P.A.M. Dirac «A Theory of Electrons and Protons», Proc. R. Soc. A126 360 (1930) link to the volume of the Proceedings of the Royal Society of London containing the article at page 360

  • C.D. Anderson, Phys. Rev. 43, 491 (1933)

  • R. Frisch and O. Stern, Z. Phys. 85 4 (1933)



Ссылки |


Лекции по квантовой физике









Popular posts from this blog

Steve Gadd

Подольск

Лира (музыкальный инструмент)